Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
APL Photonics ; 9(2)2024.
Article in English | MEDLINE | ID: mdl-38681736

ABSTRACT

Microresonator frequency combs and their design versatility have revolutionized research areas from data communication to exoplanet searches. While microcombs in the 1550 nm band are well documented, there is interest in using microcombs in other bands. Here, we demonstrate the formation and spectral control of normal-dispersion dark soliton microcombs at 1064 nm. We generate 200 GHz repetition rate microcombs by inducing a photonic bandgap of the microresonator mode for the pump laser with a photonic crystal. We perform the experiments with normal-dispersion microresonators made from Ta2O5 and explore unique soliton pulse shapes and operating behaviors. By adjusting the resonator dispersion through its nanostructured geometry, we demonstrate control over the spectral bandwidth of these combs, and we employ numerical modeling to understand their existence range. Our results highlight how photonic design enables microcomb spectra tailoring across wide wavelength ranges, offering potential in bioimaging, spectroscopy, and photonic-atomic quantum technologies.

2.
Phys Rev Lett ; 132(2): 023801, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38277595

ABSTRACT

We explore optical parametric oscillation (OPO) in nanophotonic resonators, enabling arbitrary, nonlinear phase matching and nearly lossless control of energy conversion. Such pristine OPO laser converters are determined by nonlinear light-matter interactions, making them both technologically flexible and broadly reconfigurable. We utilize a nanostructured inner-wall modulation in the resonator to achieve universal phase matching for OPO-laser conversion, but coherent backscattering also induces a counterpropagating pump laser. This depletes the intraresonator optical power in either direction, increasing the OPO threshold power and limiting laser-conversion efficiency, the ratio of optical power in target signal and idler frequencies to the pump. We develop an analytical model of this system that emphasizes an understanding of optimal laser-conversion and threshold behaviors, and we use the model to guide experiments with nanostructured-resonator OPO laser-conversion circuits, fully integrated on chip and unlimited by group-velocity dispersion. Our Letter demonstrates the fundamental connection between OPO laser-conversion efficiency and the resonator coupling rate, subject to the relative phase and power of counterpropagating pump fields. We achieve (40±4) mW of on-chip power, corresponding to (41±4)% conversion efficiency, and discover a path toward near-unity OPO laser-conversion efficiency.

3.
Nat Commun ; 13(1): 7862, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36543782

ABSTRACT

The use of optical interconnects has burgeoned as a promising technology that can address the limits of data transfer for future high-performance silicon chips. Recent pushes to enhance optical communication have focused on developing wavelength-division multiplexing technology, and new dimensions of data transfer will be paramount to fulfill the ever-growing need for speed. Here we demonstrate an integrated multi-dimensional communication scheme that combines wavelength- and mode- multiplexing on a silicon photonic circuit. Using foundry-compatible photonic inverse design and spectrally flattened microcombs, we demonstrate a 1.12-Tb/s natively error-free data transmission throughout a silicon nanophotonic waveguide. Furthermore, we implement inverse-designed surface-normal couplers to enable multimode optical transmission between separate silicon chips throughout a multimode-matched fibre. All the inverse-designed devices comply with the process design rules for standard silicon photonic foundries. Our approach is inherently scalable to a multiplicative enhancement over the state of the art silicon photonic transmitters.

4.
Nat Commun ; 13(1): 3134, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35668097

ABSTRACT

Nonlinearity is a powerful determinant of physical systems. Controlling nonlinearity leads to interesting states of matter and new applications. In optics, diverse families of continuous and discrete states arise from balance of nonlinearity and group-velocity dispersion (GVD). Moreover, the dichotomy of states with locally enhanced or diminished field intensity depends critically on the relative sign of nonlinearity and either anomalous or normal GVD. Here, we introduce a resonator with unconditionally normal GVD and a single defect mode that supports both dark, reduced-intensity states and bright, enhanced-intensity states. We access and explore this dark-to-bright pulse continuum by phase-matching with a photonic-crystal resonator, which mediates the competition of nonlinearity and normal GVD. These stationary temporal states are coherent frequency combs, featuring highly designable spectra and ultralow noise repetition-frequency and intensity characteristics. The dark-to-bright continuum illuminates physical roles of Kerr nonlinearity, GVD, and laser propagation in a gapped nanophotonic medium.

5.
Nat Commun ; 13(1): 3323, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35680923

ABSTRACT

Optical microresonators with high quality (Q) factors are essential to a wide range of integrated photonic devices. Steady efforts have been directed towards increasing microresonator Q factors across a variety of platforms. With success in reducing microfabrication process-related optical loss as a limitation of Q, the ultimate attainable Q, as determined solely by the constituent microresonator material absorption, has come into focus. Here, we report measurements of the material-limited Q factors in several photonic material platforms. High-Q microresonators are fabricated from thin films of SiO2, Si3N4, Al0.2Ga0.8As, and Ta2O5. By using cavity-enhanced photothermal spectroscopy, the material-limited Q is determined. The method simultaneously measures the Kerr nonlinearity in each material and reveals how material nonlinearity and ultimate Q vary in a complementary fashion across photonic materials. Besides guiding microresonator design and material development in four material platforms, the results help establish performance limits in future photonic integrated systems.

6.
Light Sci Appl ; 10(1): 109, 2021 May 26.
Article in English | MEDLINE | ID: mdl-34039954

ABSTRACT

Microcombs-optical frequency combs generated in microresonators-have advanced tremendously in the past decade, and are advantageous for applications in frequency metrology, navigation, spectroscopy, telecommunications, and microwave photonics. Crucially, microcombs promise fully integrated miniaturized optical systems with unprecedented reductions in cost, size, weight, and power. However, the use of bulk free-space and fiber-optic components to process microcombs has restricted form factors to the table-top. Taking microcomb-based optical frequency synthesis around 1550 nm as our target application, here, we address this challenge by proposing an integrated photonics interposer architecture to replace discrete components by collecting, routing, and interfacing octave-wide microcomb-based optical signals between photonic chiplets and heterogeneously integrated devices. Experimentally, we confirm the requisite performance of the individual passive elements of the proposed interposer-octave-wide dichroics, multimode interferometers, and tunable ring filters, and implement the octave-spanning spectral filtering of a microcomb, central to the interposer, using silicon nitride photonics. Moreover, we show that the thick silicon nitride needed for bright dissipative Kerr soliton generation can be integrated with the comparatively thin silicon nitride interposer layer through octave-bandwidth adiabatic evanescent coupling, indicating a path towards future system-level consolidation. Finally, we numerically confirm the feasibility of operating the proposed interposer synthesizer as a fully assembled system. Our interposer architecture addresses the immediate need for on-chip microcomb processing to successfully miniaturize microcomb systems and can be readily adapted to other metrology-grade applications based on optical atomic clocks and high-precision navigation and spectroscopy.

8.
Opt Lett ; 46(4): 817-820, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33577521

ABSTRACT

Designing integrated photonics, especially to leverage Kerr-nonlinear optics, requires accurate and precise knowledge of the refractive index across the visible to infrared spectral ranges. Tantala (Ta2O5) is an emerging material platform for integrated photonics and nanophotonics that offers broadband ultralow loss, moderately high nonlinearity, and advantages for scalable and heterogeneous integration. We present refractive index measurements on a thin film of tantala, and we explore the efficacy of this data for group-velocity-dispersion (GVD) engineering with waveguide and ring-resonator devices. In particular, the observed spectral extent of supercontinuum generation in fabricated waveguides and the wavelength dependence of free spectral range (FSR) in optical resonators provide a sensitive test of our integrated photonics design process. Our work opens up new design possibilities with tantala, including with octave-spanning soliton microcombs.

9.
Opt Express ; 28(20): 29148-29154, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-33114819

ABSTRACT

We demonstrate a dual-comb spectrometer based on electro-optic modulation of a continuous-wave laser at 10 GHz. The system simultaneously offers fast acquisition speed and ultrabroad spectral coverage, spanning 120 THz across the near infrared. Our spectrometer is highly adaptable, and we demonstrate absorption spectroscopy of atmospheric gases and a dual-comb configuration that captures nonlinear Raman spectra of semiconductor materials via coherent anti-Stokes Raman scattering. The ability to rapidly and simultaneously acquire broadband spectra with high frequency resolution and high sensitivity points to new possibilities for hyperspectral sensing in fields such as remote sensing, biological detection and imaging, and machine vision.

10.
Phys Rev Lett ; 125(15): 153901, 2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33095619

ABSTRACT

We explore intrinsic thermal noise in soliton microcombs, revealing thermodynamic correlations induced by nonlinearity and group-velocity dispersion. A suitable dispersion design gives rise to control over thermal-noise transduction from the environment to a soliton microcomb. We present simulations with the Lugiato-Lefever equation (LLE), including temperature as a stochastic variable. By systematically tuning the dispersion, we suppress repetition-rate frequency fluctuations by up to 50 decibels for different LLE soliton solutions. In an experiment, we observe a measurement-system-limited 15-decibel reduction in the repetition-rate phase noise for various settings of the pump-laser frequency, and our measurements agree with a thermal-noise model. Finally, we compare two octave-spanning soliton microcombs with similar optical spectra and offset frequencies, but with designed differences in dispersion. Remarkably, their thermal-noise-limited carrier-envelope-offset frequency linewidths are 1 MHz and 100 Hz, which demonstrates an unprecedented potential to mitigate thermal noise. Our results guide future soliton-microcomb design for low-noise applications, and, more generally, they illuminate emergent properties of nonlinear, multimode optical systems subject to intrinsic fluctuations.

11.
Opt Lett ; 45(17): 4939, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32870895

ABSTRACT

This publisher's note contains corrections to Opt. Lett.44, 4737 (2019) OPLEDP0146-959210.1364/OL.44.004737.

12.
Opt Lett ; 45(18): 5275-5278, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32932510

ABSTRACT

The demand for low-noise, continuous-wave, frequency-tunable lasers based on semiconductor integrated photonics has advanced in support of numerous applications. In particular, an important goal is to achieve a narrow spectral linewidth, commensurate with bulk-optic or fiber-optic laser platforms. Here we report on laser-frequency-stabilization experiments with a heterogeneously integrated III/V-Si widely tunable laser and a high-finesse, thermal-noise-limited photonic resonator. This hybrid architecture offers a chip-scale optical-frequency reference with an integrated linewidth of 60 Hz and a fractional frequency stability of 2.5×10-13 at 1 s integration time. We explore the potential for stabilization with respect to a resonator with lower thermal noise by characterizing laser-noise contributions such as residual amplitude modulation and photodetection noise. Widely tunable, compact and integrated, cost-effective, stable, and narrow-linewidth lasers are envisioned for use in various fields, including communication, spectroscopy, and metrology.

13.
Opt Lett ; 45(15): 4192-4195, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32735256

ABSTRACT

We experimentally demonstrate efficient and broadband supercontinuum generation in nonlinear tantala (Ta2O5) waveguides using a 1560 nm femtosecond seed laser. With incident pulse energies as low as 100 pJ, we create spectra spanning up to 1.6 octaves across the visible and infrared. Fabricated devices feature propagation losses as low as 10 dB/m, and they can be dispersion engineered through lithographic patterning for specific applications. We show a waveguide design suitable for low-power self-referencing of a fiber frequency comb that produces dispersive-wave radiation directly at the second-harmonic wavelength of the seed laser. A fiber-connectorized, hermetically sealed module with 2 dB per facet insertion loss and watt-level average-power handling is also described. Highly efficient and fully packaged tantala waveguides may open new possibilities for the integration of nonlinear nanophotonics into systems for precision timing, quantum science, biological imaging, and remote sensing.

14.
Opt Lett ; 45(13): 3677-3680, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32630928

ABSTRACT

We demonstrate mid-infrared (MIR) frequency combs at 10 GHz repetition rate via intra-pulse difference-frequency generation (DFG) in quasi-phase-matched nonlinear media. Few-cycle pump pulses (≲15fs, 100 pJ) from a near-infrared electro-optic frequency comb are provided via nonlinear soliton-like compression in photonic-chip silicon-nitride waveguides. Subsequent intra-pulse DFG in periodically poled lithium niobate waveguides yields MIR frequency combs in the 3.1-4.8 µm region, while orientation-patterned gallium phosphide provides coverage across 7-11 µm. Cascaded second-order nonlinearities simultaneously provide access to the carrier-envelope-offset frequency of the pump source via in-line f-2f nonlinear interferometry. The high-repetition rate MIR frequency combs introduced here can be used for condensed phase spectroscopy and applications such as laser heterodyne radiometry.

15.
Sci Adv ; 6(9): eaax6230, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32158936

ABSTRACT

Microresonator-based soliton frequency combs, microcombs, have recently emerged to offer low-noise, photonic-chip sources for applications, spanning from timekeeping to optical-frequency synthesis and ranging. Broad optical bandwidth, brightness, coherence, and frequency stability have made frequency combs important to directly probe atoms and molecules, especially in trace gas detection, multiphoton light-atom interactions, and spectroscopy in the extreme ultraviolet. Here, we explore direct microcomb atomic spectroscopy, using a cascaded, two-photon 1529-nm atomic transition in a rubidium micromachined cell. Fine and simultaneous repetition rate and carrier-envelope offset frequency control of the soliton enables direct sub-Doppler and hyperfine spectroscopy. Moreover, the entire set of microcomb modes are stabilized to this atomic transition, yielding absolute optical-frequency fluctuations at the kilohertz level over a few seconds and <1-MHz day-to-day accuracy. Our work demonstrates direct atomic spectroscopy with Kerr microcombs and provides an atomic-stabilized microcomb laser source, operating across the telecom band for sensing, dimensional metrology, and communication.

16.
Nat Commun ; 11(1): 1331, 2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32165610

ABSTRACT

Recent advances in nonlinear optics have revolutionized integrated photonics, providing on-chip solutions to a wide range of new applications. Currently, state of the art integrated nonlinear photonic devices are mainly based on dielectric material platforms, such as Si3N4 and SiO2. While semiconductor materials feature much higher nonlinear coefficients and convenience in active integration, they have suffered from high waveguide losses that prevent the realization of efficient nonlinear processes on-chip. Here, we challenge this status quo and demonstrate a low loss AlGaAs-on-insulator platform with anomalous dispersion and quality (Q) factors beyond 1.5 × 106. Such a high quality factor, combined with high nonlinear coefficient and small mode volume, enabled us to demonstrate a Kerr frequency comb threshold of only ∼36 µW in a resonator with a 1 THz free spectral range, ∼100 times lower compared to that in previous semiconductor platforms. Moreover, combs with broad spans (>250 nm) have been generated with a pump power of ∼300 µW, which is lower than the threshold power of state-of the-art dielectric micro combs. A soliton-step transition has also been observed for the first time in an AlGaAs resonator.

17.
Opt Express ; 27(26): 37374-37382, 2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31878519

ABSTRACT

Ultrashort laser pulses that last only a few optical cycles have been transformative tools for studying and manipulating light-matter interactions. Few-cycle pulses are typically produced from high-peak-power lasers, either directly from a laser oscillator or through nonlinear effects in bulk or fiber materials. Now, an opportunity exists to explore the few-cycle regime with the emergence of fully integrated nonlinear photonics. Here, we experimentally and numerically demonstrate how lithographically patterned waveguides can be used to generate few-cycle laser pulses from an input seed pulse. Moreover, our work explores a design principle in which lithographically varying the group-velocity dispersion in a waveguide enables the creation of highly constant-intensity supercontinuum spectra across an octave of bandwidth. An integrated source of few-cycle pulses could broaden the range of applications for ultrafast light sources, including supporting new lab-on-a-chip systems in a scalable form factor.

18.
Phys Rev Lett ; 123(17): 173904, 2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31702256

ABSTRACT

We predict subharmonic entrainment of breather-soliton oscillations to a periodic perturbation at the round-trip time T_{R} in Kerr-nonlinear optical resonators; an integer ratio T_{b}/T_{R}=N≫1 results for breathing period T_{b}. Rigid entrainment is observed with intermediate finesse (F∼30-40) for N up to 20, and we propose a way to realize higher entrainment ratios at higher finesse. This nontrivial synchronization across the widely separated timescales of the photon lifetime and round-trip time points to a new direction for research in this field and may find application, for example, in the measurement of a pulse train repetition rate that is electronically inaccessible.

19.
Opt Lett ; 44(19): 4737-4740, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31568430

ABSTRACT

Octave-spanning frequency combs have been successfully demonstrated in Kerr nonlinear microresonators. These microcombs rely on both engineered dispersion, to enable generation of frequency components across the octave, and on engineered coupling, to efficiently extract the generated light into an access waveguide while maintaining a close to critically coupled pump. The latter is challenging, as the spatial overlap between the access waveguide and the ring modes decays with frequency. This leads to strong coupling variation across the octave, with poor extraction at short wavelengths. Here, we investigate how a waveguide wrapped around a portion of the resonator, in a pulley scheme, can improve the extraction of octave-spanning microcombs, in particular at short wavelengths. We use the coupled-mode theory to predict the performance of the pulley couplers and demonstrate good agreement with experimental measurements. Using an optimal pulley coupling design, we demonstrate a 20 dB improvement in extraction at short wavelengths compared to straight waveguide coupling.

20.
Opt Lett ; 44(16): 4075-4078, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31415550

ABSTRACT

In this Letter, we demonstrate a low loss gallium arsenide and aluminum gallium arsenide on an insulator platform by heterogenous integration. The resonators on this platform exhibit record high quality factors up to 1.5×106, corresponding to a propagation loss ∼0.4 dB/cm. For the first time, to the best of our knowledge, the loss of integrated III-V semiconductor on insulator waveguides becomes comparable with that of the silicon-on-insulator waveguides. This Letter should have a significant impact on photonic integrated circuits (PICs) and become an essential building block for the evolving nonlinear PICs and integrated quantum photonic systems in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...