Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
J Thorac Oncol ; 19(1): 160-165, 2024 01.
Article in English | MEDLINE | ID: mdl-37429463

ABSTRACT

INTRODUCTION: MET fusions have been described only rarely in NSCLC. Thus, data on patient characteristics and treatment response are limited. We here report histopathologic data, patient demographics, and treatment outcome including response to MET tyrosine kinase inhibitor (TKI) therapy in MET fusion-positive NSCLC. METHODS: Patients with NSCLC and MET fusions were identified mostly by RNA sequencing within the routine molecular screening program of the national Network Genomic Medicine, Germany. RESULTS: We describe a cohort of nine patients harboring MET fusions. Among these nine patients, two patients had been reported earlier. The overall frequency was 0.29% (95% confidence interval: 0.15-0.55). The tumors were exclusively adenocarcinoma. The cohort was heterogeneous in terms of age, sex, or smoking status. We saw five different fusion partner genes (KIF5B, TRIM4, ST7, PRKAR2B, and CAPZA2) and several different breakpoints. Four patients were treated with a MET TKI leading to two partial responses, one stable disease, and one progressive disease. One patient had a BRAF V600E mutation as acquired resistance mechanism. CONCLUSIONS: MET fusions are very rare oncogenic driver events in NSCLC and predominantly seem in adenocarcinomas. They are heterogeneous in terms of fusion partners and breakpoints. Patients with MET fusion can benefit from MET TKI therapy.


Subject(s)
Adenocarcinoma , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Adenocarcinoma/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Treatment Outcome
2.
Eur J Cancer ; 179: 124-135, 2023 01.
Article in English | MEDLINE | ID: mdl-36521334

ABSTRACT

OBJECTIVES: Resistance to MET inhibition occurs inevitably in MET-dependent non-small cell lung cancer and the underlying mechanisms are insufficiently understood. We describe resistance mechanisms in patients with MET exon 14 skipping mutation (METΔex14), MET amplification, and MET fusion and report treatment outcomes after switching therapy from type I to type II MET inhibitors. MATERIALS AND METHODS: Pre- and post-treatment biopsies were analysed by NGS (next generation sequencing), digital droplet PCR (polymerase chain reaction), and FISH (fluorescense in situ hybridization). A patient-derived xenograft model was generated in one case. RESULTS: Of 26 patients with MET tyrosine kinase inhibitor treatment, eight had paired pre- and post-treatment biopsies (Three with MET amplification, three with METΔex14, two with MET fusions (KIF5B-MET and PRKAR2B-MET).) In six patients, mechanisms of resistance were detected, whereas in two cases, the cause of resistance remained unclear. We found off-target resistance mechanisms in four cases with KRAS mutations and HER2 amplifications appearing. Two patients exhibited second-site MET mutations (p.D1246N and p. Y1248H). Three patients received type I and type II MET tyrosine kinase inhibitors sequentially. In two cases, further progressive disease was seen hereafter. The patient with KIF5B-MET fusion received three different MET inhibitors and showed long-lasting stable disease and a repeated response after switching therapy, respectively. CONCLUSION: Resistance to MET inhibition is heterogeneous with on- and off-target mechanisms occurring regardless of the initial MET aberration. Switching therapy between different types of kinase inhibitors can lead to repeated responses in cases with second-site mutations. Controlled clinical trials in this setting with larger patient numbers are needed, as evidence to date is limited to preclinical data and case series.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Proto-Oncogene Proteins c-met/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mutation
3.
J Neurooncol ; 159(2): 309-317, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35716310

ABSTRACT

BACKGROUND: The phase 2 REGOMA trial suggested an encouraging overall survival benefit in glioblastoma patients at first relapse treated with the multikinase inhibitor regorafenib. Here, we evaluated the efficacy and side effects of regorafenib in a real-life setting. METHODS: From 2018 to 2021, 30 patients with progressive WHO CNS grade 3 or 4 gliomas treated with regorafenib (160 mg/day; first 3 weeks of each 4-week cycle) with individual dose adjustment depending on toxicity were retrospectively identified. Side effects were evaluated according to the Common Terminology Criteria for Adverse Events (version 5.0). MRI was obtained at baseline and after every second cycle. Tumor progression was assessed according to RANO criteria. After regorafenib initiation, the median PFS and OS were calculated. RESULTS: The median number of treatment lines before regorafenib was 2 (range 1-4). Most patients (73%) had two or more pretreatment lines. At first relapse, 27% of patients received regorafenib. A total of 94 regorafenib cycles were administered (median 2 cycles; range 1-9 cycles). Grade 3 and 4 side effects were observed in 47% and 7% of patients, respectively, and were not significantly increased in patients with two or more pretreatments (P > 0.05). The most frequent grade 3 or 4 side effects were laboratory abnormalities (62%). PFS was 2.6 months (range 0.8-8.2 months), and the OS was 6.2 months (range 0.9-24 months). CONCLUSIONS: In patients with progressive WHO grade 3 or 4 gliomas, predominantly with two pretreatment lines or more, regorafenib seems to be effective despite considerable grade 3 or 4 side effects.


Subject(s)
Glioma , Phenylurea Compounds , Humans , Pyridines , Recurrence , Retrospective Studies
4.
J Clin Pathol ; 75(6): 416-421, 2022 Jun.
Article in English | MEDLINE | ID: mdl-33766954

ABSTRACT

AIM: Next generation sequencing (NGS) represents a key diagnostic tool to identify clinically relevant gene alterations for treatment-decision making in cancer care. However, the complex manual workflow required for NGS has limited its implementation in routine clinical practice. In this worldwide study, we validated the clinical performance of the TargetPlex FFPE-Direct DNA Library Preparation Kit for NGS analysis. Impressively, this new assay obviates the need for separate, labour intensive and time-consuming pre-analytical steps of DNA extraction, purification and isolation from formalin-fixed paraffin embedded (FFPE) specimens in the NGS workflow. METHODS: The TargetPlex FFPE-Direct DNA Library Preparation Kit, which enables NGS analysis directly from FFPE, was specifically developed for this study by TargetPlex Genomics Pleasanton, California. Eleven institutions agreed to take part in the study coordinated by the Molecular Cytopathology Meeting Group (University of Naples Federico II, Naples, Italy). All participating institutions received a specific Library Preparation Kit to test eight FFPE samples previously assessed with standard protocols. The analytical parameters and mutations detected in each sample were then compared with those previously obtained with standard protocols. RESULTS: Overall, 92.8% of the samples were successfully analysed with the TargetPlex FFPE-Direct DNA Library Preparation Kit on Thermo Fisher Scientific and Illumina platforms. Altogether, in comparison with the standard workflow, the TargetPlex FFPE-Direct DNA Library Preparation Kit was able to detect 90.5% of the variants. CONCLUSION: The TargetPlex FFPE-Direct DNA Library Preparation Kit combined with the SiRe panel constitutes a convenient, practical and robust cost-saving solution for FFPE NGS analysis in routine practice.


Subject(s)
Genomics , High-Throughput Nucleotide Sequencing , Gene Library , High-Throughput Nucleotide Sequencing/methods , Humans , Mutation , Paraffin Embedding
5.
Gynecol Oncol Rep ; 37: 100801, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34159243

ABSTRACT

•First Case of hematogenously metastasized sclerosing epithelioid fibrosarcoma arising primarily in the cervix uteri.•Tumor cells were strongly and diffusely positive for MUC4.•Tumor showed a rare EWSR1-CREB3L2 gene fusion.

6.
Am J Pathol ; 191(7): 1269-1280, 2021 07.
Article in English | MEDLINE | ID: mdl-34004158

ABSTRACT

Therapeutic decisions in lung cancer critically depend on the determination of histologic types and oncogene mutations. Therefore, tumor samples are subjected to standard histologic and immunohistochemical analyses and examined for relevant mutations using comprehensive molecular diagnostics. In this study, an alternative diagnostic approach for automatic and label-free detection of mutations in lung adenocarcinoma tissue using quantum cascade laser-based infrared imaging is presented. For this purpose, a five-step supervised classification algorithm was developed, which was not only able to detect tissue types and tumor lesions, but also the tumor type and mutation status of adenocarcinomas. Tumor detection was verified on a data set of 214 patient samples with a specificity of 97% and a sensitivity of 95%. Furthermore, histology typing was verified on samples from 203 of the 214 patients with a specificity of 97% and a sensitivity of 94% for adenocarcinoma. The most frequently occurring mutations in adenocarcinoma (KRAS, EGFR, and TP53) were differentiated by this technique. Detection of mutations was verified in 60 patient samples from the data set with a sensitivity and specificity of 95% for each mutation. This demonstrates that quantum cascade laser infrared imaging can be used to analyze morphologic differences as well as molecular changes. Therefore, this single, one-step measurement provides comprehensive diagnostics of lung cancer histology types and most frequent mutations.


Subject(s)
Adenocarcinoma of Lung/genetics , DNA Mutational Analysis/methods , Lasers, Semiconductor , Lung Neoplasms/genetics , Spectroscopy, Fourier Transform Infrared/methods , Aged , Aged, 80 and over , Female , Humans , Male , Microscopy/methods , Middle Aged , Mutation , Sensitivity and Specificity
8.
BMC Med Genomics ; 14(1): 62, 2021 02 27.
Article in English | MEDLINE | ID: mdl-33639937

ABSTRACT

BACKGROUND: Gene fusions represent promising targets for cancer therapy in lung cancer. Reliable detection of multiple gene fusions is therefore essential. METHODS: Five commercially available parallel sequencing assays were evaluated for their ability to detect gene fusions in eight cell lines and 18 FFPE tissue samples carrying a variety of known gene fusions. Four RNA-based assays and one DNA-based assay were compared; two were hybrid capture-based, TruSight Tumor 170 Assay (Illumina) and SureSelect XT HS Custom Panel (Agilent), and three were amplicon-based, Archer FusionPlex Lung Panel (ArcherDX), QIAseq RNAscan Custom Panel (Qiagen) and Oncomine Focus Assay (Thermo Fisher Scientific). RESULTS: The Illumina assay detected all tested fusions and showed the smallest number of false positive results. Both, the ArcherDX and Qiagen panels missed only one fusion event. Among the RNA-based assays, the Qiagen panel had the highest number of false positive events. The Oncomine Focus Assay (Thermo Fisher Scientific) was the least adequate assay for our purposes, seven fusions were not covered by the assay and two fusions were classified as uncertain. The DNA-based SureSelect XT HS Custom Panel (Agilent) missed three fusions and nine fusions were only called by one software version. Additionally, many false positive fusions were observed. CONCLUSIONS: In summary, especially RNA-based parallel sequencing approaches are potent tools for reliable detection of targetable gene fusions in clinical diagnostics.


Subject(s)
High-Throughput Nucleotide Sequencing , Gene Fusion , Lung Neoplasms/genetics , Oncogene Proteins, Fusion/genetics , Sequence Analysis, RNA
9.
Sci Rep ; 10(1): 11387, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32647293

ABSTRACT

Outcome of immune checkpoint inhibition in cancer can be predicted by measuring PDL1 expression of tumor cells. Search for additional biomarkers led to tumor mutational burden (TMB) as surrogate marker for neoantigens presented. While TMB was previously determined via whole exome sequencing (WES), there have been approaches with comprehensive gene panels as well. We sequenced samples derived from formalin-fixed tumors, a POLE mutated cell line and standard DNA by WES and five different panels. If available, normal tissue was also exome sequenced. Sequencing data was analyzed by commercial software solutions and an in-house pipeline. A robust Pearson correlation (R = 0.9801 ± 0.0167; mean ± sd; N = 7) was determined for the different panels in a tumor paired normal setting for WES. Expanded analysis on tumor only exome sequenced samples yielded similar correlation (R = 0.9439 ± 0.0632; mean ± sd; N = 14). Remaining germline variants increased TMB in WES by 5.761 ± 1.953 (mean ± sd.; N = 7) variants per megabase (v/mb) for samples including synonymous variants and 3.883 ± 1.38 v/mb for samples without synonymous variants compared to tumor-normal paired calling results. Due to limited sample numbers in this study, additional replication is suggested for a clinical setting. Remaining germline variants in a tumor-only setting and artifacts caused by different library chemistries construction might affect the results.


Subject(s)
Antigens, Neoplasm/genetics , Biomarkers, Tumor/genetics , DNA Mutational Analysis/methods , Neoplasms/diagnosis , Algorithms , Antigens, Neoplasm/immunology , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Biomarkers, Tumor/analysis , Cell Line, Tumor , Computational Biology , Drug Resistance, Neoplasm/genetics , Germ-Line Mutation , High-Throughput Nucleotide Sequencing , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/immunology , Exome Sequencing
10.
Oncoimmunology ; 8(12): e1665977, 2019.
Article in English | MEDLINE | ID: mdl-31741767

ABSTRACT

Pleomorphic dermal sarcoma (PDS) is one of the most common sarcoma of the skin. Currently, limited treatment options exist for advanced stages of the disease. While immune checkpoint inhibitors (CPIs) have revolutionized cancer treatment options-their efficacy in PDS has not been explored yet. Here, we present two advanced PDS cases that showed response to anti-PD-1 therapy. Patient A had a locally metastasized PDS and reached a complete remission of the disease after eight cycles of Pembrolizumab. Patient B developed an inoperable relapse of PDS with a complete remission of the disease 4 months after treatment with Pembrolizumab in combination with radiotherapy. To our knowledge, this is the first report of two individuals with advanced PDS that successfully underwent anti-PD1 treatment. By comparing the immune micromilieu to a previously published cohort, we show that the two cases are representative for PDS tumors - potentially making these results more generalizable.

11.
Mol Ther Nucleic Acids ; 18: 444-454, 2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31655262

ABSTRACT

Streptococcus pyogenes is an exclusively human pathogen causing a wide range of clinical manifestations from mild superficial infections to severe, life-threatening, invasive diseases. S. pyogenes is consistently susceptible toward penicillin, but therapeutic failure of penicillin treatment has been reported frequently. At the same time, streptococcal resistance to alternative antibiotics, e.g., macrolides, is common. To reduce the application of antibiotics for treatment of S. pyogenes infections, it is mandatory to develop novel therapeutic strategies. Antisense peptide nucleic acids (PNAs) are synthetic DNA derivatives widely applied for hybridization-based microbial diagnostics. They have a high potential as therapeutic agents, because PNA antisense targeting of essential genes was shown to reduce growth of several pathogenic bacterial species. Spontaneous cellular uptake of PNAs is restricted in eukaryotes and in bacteria. To overcome this problem, PNAs can be coupled to cell-penetrating peptides (CPPs) that support PNA translocation over the cell membrane. In bacteria, the efficiency of CPP-mediated PNA uptake is species specific. Previously, HIV-1 transactivator of transcription (HIV-1 TAT) peptide-coupled anti-gyrA PNA was shown to inhibit growth of S. pyogenes. Here, we investigate the effect of 18 CPP-coupled anti-gyrA PNAs on S. pyogenes growth and virulence. HIV-1 TAT, oligolysine (K8), and (RXR)4XB peptide-coupled anti-gyrA PNAs efficiently abolished bacterial growth in vitro. Consistently, treatment with these three CPP-PNAs increased survival of larvae in a Galleria mellonella infection model.

12.
J Mol Diagn ; 21(6): 971-984, 2019 11.
Article in English | MEDLINE | ID: mdl-31382035

ABSTRACT

Clinical data confirmed that patients with ROS1 rearrangement are sensitive to specific inhibitors. Therefore, reliable detection of ROS1 rearrangements is essential. Several diagnostic techniques are currently available. However, previous studies were hampered by the low number of ROS1-positive samples. Thirty-five samples, including 32 ROS1 fluorescent in situ hybridization (FISH)-positive and three ROS1 FISH-negative samples were evaluated by ROS1 chromogenic in situ hybridization, ROS proto-oncogene 1, receptor tyrosine kinase (ROS1) immunohistochemistry (IHC), an Agilent SureSelectXT HS custom panel, the Archer FusionPlex Comprehensive Thyroid and Lung panel, and a custom NanoString fusion panel. Some samples were additionally analyzed with the Illumina TruSight Tumor 170 assay. Eleven samples were ROS1 FISH positive by a break-apart signal pattern. In all 11 samples, a ROS1 fusion was confirmed by at least one other method. The other 21 samples tested ROS1 FISH positive by an isolated 3' green signal pattern. Ten of 21 samples could be confirmed by at least two other methods. The other 11 samples tested negative by ROS1 IHC and at least one other method, indicating a false-positive ROS1 FISH result. Our study found that all ROS1 FISH-positive samples with isolated 3' green signals should be confirmed by another method. When sufficient material is available, extraction-based parallel sequencing approaches for the verification of these cases might be preferable.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Gene Rearrangement/genetics , In Situ Hybridization/methods , Lung Neoplasms/genetics , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins/genetics , Antigens, Differentiation, B-Lymphocyte/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Chemical Fractionation/methods , Gene Fusion , Histocompatibility Antigens Class II/genetics , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence/methods , Lung Neoplasms/pathology , Proto-Oncogene Mas
13.
Sci Rep ; 7(1): 12241, 2017 09 25.
Article in English | MEDLINE | ID: mdl-28947755

ABSTRACT

Small regulatory RNAs (sRNAs) play a role in the control of bacterial virulence gene expression. In this study, we investigated an sRNA that was identified in Streptococcus pyogenes (group A Streptococcus, GAS) but is conserved throughout various streptococci. In a deletion strain, expression of mga, the gene encoding the multiple virulence gene regulator, was reduced. Accordingly, transcript and proteome analyses revealed decreased expression of several Mga-activated genes. Therefore, and because the sRNA was shown to interact with the 5' UTR of the mga transcript in a gel-shift assay, we designated it MarS for m ga-activating regulatory sRNA. Down-regulation of important virulence factors, including the antiphagocytic M-protein, led to increased susceptibility of the deletion strain to phagocytosis and reduced adherence to human keratinocytes. In a mouse infection model, the marS deletion mutant showed reduced dissemination to the liver, kidney, and spleen. Additionally, deletion of marS led to increased tolerance towards oxidative stress. Our in vitro and in vivo results indicate a modulating effect of MarS on virulence gene expression and on the pathogenic potential of GAS.


Subject(s)
Bacterial Proteins/biosynthesis , Gene Expression Regulation, Bacterial , RNA, Small Untranslated/metabolism , Streptococcus pyogenes/genetics , Streptococcus pyogenes/pathogenicity , 5' Untranslated Regions , Animal Structures/microbiology , Animal Structures/pathology , Animals , Bacterial Load , Bacterial Proteins/genetics , Cells, Cultured , Disease Models, Animal , Electrophoretic Mobility Shift Assay , Gene Deletion , Gene Expression Profiling , Humans , Macrophages/immunology , Macrophages/microbiology , Mice, Inbred BALB C , Nucleic Acid Hybridization , Proteome/analysis , RNA, Small Untranslated/genetics , Streptococcal Infections/microbiology , Streptococcal Infections/pathology , Virulence Factors/biosynthesis
14.
Front Genet ; 6: 189, 2015.
Article in English | MEDLINE | ID: mdl-26042151

ABSTRACT

Streptococci represent a diverse group of Gram-positive bacteria, which colonize a wide range of hosts among animals and humans. Streptococcal species occur as commensal as well as pathogenic organisms. Many of the pathogenic species can cause severe, invasive infections in their hosts leading to a high morbidity and mortality. The consequence is a tremendous suffering on the part of men and livestock besides the significant financial burden in the agricultural and healthcare sectors. An environmentally stimulated and tightly controlled expression of virulence factor genes is of fundamental importance for streptococcal pathogenicity. Bacterial small non-coding RNAs (sRNAs) modulate the expression of genes involved in stress response, sugar metabolism, surface composition, and other properties that are related to bacterial virulence. Even though the regulatory character is shared by this class of RNAs, variation on the molecular level results in a high diversity of functional mechanisms. The knowledge about the role of sRNAs in streptococci is still limited, but in recent years, genome-wide screens for sRNAs have been conducted in an increasing number of species. Bioinformatics prediction approaches have been employed as well as expression analyses by classical array techniques or next generation sequencing. This review will give an overview of whole genome screens for sRNAs in streptococci with a focus on describing the different methods and comparing their outcome considering sRNA conservation among species, functional similarities, and relevance for streptococcal infection.

15.
Mol Ther Nucleic Acids ; 2: e132, 2013 Nov 05.
Article in English | MEDLINE | ID: mdl-24193033

ABSTRACT

While Streptococcus pyogenes is consistently susceptible toward penicillin, therapeutic failure of penicillin treatment has been reported repeatedly and a considerable number of patients exhibit allergic reactions to this substance. At the same time, streptococcal resistance to alternative antibiotics, e.g., macrolides, has increased. Taken together, these facts demand the development of novel therapeutic strategies. In this study, S. pyogenes growth was inhibited by application of peptide-conjugated antisense-peptide nucleic acids (PNAs) specific for the essential gyrase A gene (gyrA). Thereby, HIV-1 Tat peptide-coupled PNAs were more efficient inhibitors of streptococcal growth as compared with (KFF)3K-coupled PNAs. Peptide-anti-gyrA PNAs decreased the abundance of gyrA transcripts in S. pyogenes. Growth inhibition by antisense interference was enhanced by combination of peptide-coupled PNAs with protein-level inhibitors. Antimicrobial synergy could be detected with levofloxacin and novobiocin, targeting the gyrase enzyme, and with spectinomycin, impeding ribosomal function. The prospective application of carrier peptide-coupled antisense PNAs in S. pyogenes covers the use as an antimicrobial agent and the employment as a knock-down strategy for the investigation of virulence factor function.Molecular Therapy-Nucleic Acids (2013) 2, e132; doi:10.1038/mtna.2013.62; published online 5 November 2013.

SELECTION OF CITATIONS
SEARCH DETAIL
...