Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Data ; 9(1): 444, 2022 07 25.
Article in English | MEDLINE | ID: mdl-35879368

ABSTRACT

The representation of land surface processes in hydrological and climatic models critically depends on the soil water characteristics curve (SWCC) that defines the plant availability and water storage in the vadose zone. Despite the availability of SWCC datasets in the literature, significant efforts are required to harmonize reported data before SWCC parameters can be determined and implemented in modeling applications. In this work, a total of 15,259 SWCCs from 2,702 sites were assembled from published literature, harmonized, and quality-checked. The assembled SWCC data provide a global soil hydraulic properties (GSHP) database. Parameters of the van Genuchten (vG) SWCC model were estimated from the data using the R package 'soilhypfit'. In many cases, information on the wet- or dry-end of the SWCC measurements were missing, and we used pedotransfer functions (PTFs) to estimate saturated and residual water contents. The new database quantifies the differences of SWCCs across climatic regions and can be used to create global maps of soil hydraulic properties.

2.
Sci Rep ; 9(1): 12129, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31431661

ABSTRACT

Soil bacterial communities are central to ecosystem functioning and services, yet spatial variations in their composition and diversity across biomes and climatic regions remain largely unknown. We employ multivariate general additive modeling of recent global soil bacterial datasets to elucidate dependencies of bacterial richness on key soil and climatic attributes. Although results support the well-known association between bacterial richness and soil pH, a hierarchy of novel covariates offers surprising new insights. Defining climatic soil water content explains both, the extent and connectivity of aqueous micro-habitats for bacterial diversity and soil pH, thus providing a better causal attribution. Results show that globally rare and abundant soil bacterial phylotypes exhibit different levels of dependency on environmental attributes. Surprisingly, the strong sensitivity of rare bacteria to certain environmental conditions improves their predictability relative to more abundant phylotypes that are often indifferent to variations in environmental drivers.


Subject(s)
Bacteria , Environment , Soil Microbiology , Bacteria/genetics , Biodiversity , Geography , Hydrogen-Ion Concentration , Models, Theoretical , Multivariate Analysis , RNA, Bacterial , RNA, Ribosomal, 16S , Spatial Analysis
3.
Sci Total Environ ; 624: 838-844, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29274608

ABSTRACT

Due to its increasing anthropogenic use, antimony (Sb) soil pollution is of growing concern. Many soils experience fluctuating hydrological conditions, yet very little is known about how this affects the mobility of this toxic element under field conditions. In this study, we performed an outdoor lysimeter experiment to compare Sb leaching from a calcareous shooting range soil under drained and prolonged waterlogged conditions (1.5-2.75years), followed by a 1.5-year period of soil reoxidation. Waterlogging reduced Sb leachate concentrations significantly compared to drained conditions and soil solution concentrations decreased with depth due to the increased reducing conditions. This was attributed to the reduction of Sb(V) to Sb(III) and the more effective sorption of the latter to metal (hydr)oxides. However, reductive dissolution of iron (hydr)oxides released Sb into solution, although Sb concentrations never exceeded those in the drained lysimeters. On reoxidation of the soil, Sb was remobilized, but even after 1.5years under reoxidised conditions, Sb leachate and soil solution concentrations still remained below those of the drained lysimeters. Our results demonstrate that prolonged waterlogging may have an irreversible effect on Sb leachate and soil solution concentrations.

4.
PLoS One ; 11(8): e0160729, 2016.
Article in English | MEDLINE | ID: mdl-27537548

ABSTRACT

Zinc (Zn) nutrition is of key relevance in India, as a large fraction of the population suffers from Zn malnutrition and many soils contain little plant available Zn. In this study we compared organic and conventional wheat cropping systems with respect to DTPA (diethylene triamine pentaacetic acid)-extractable Zn as a proxy for plant available Zn, yield, and grain Zn concentration. We analyzed soil and wheat grain samples from 30 organic and 30 conventional farms in Madhya Pradesh (central India), and conducted farmer interviews to elucidate sociological and management variables. Total and DTPA-extractable soil Zn concentrations and grain yield (3400 kg ha-1) did not differ between the two farming systems, but with 32 and 28 mg kg-1 respectively, grain Zn concentrations were higher on organic than conventional farms (t = -2.2, p = 0.03). Furthermore, multiple linear regression analyses revealed that (a) total soil zinc and sulfur concentrations were the best predictors of DTPA-extractable soil Zn, (b) Olsen phosphate taken as a proxy for available soil phosphorus, exchangeable soil potassium, harvest date, training of farmers in nutrient management, and soil silt content were the best predictors of yield, and (c) yield, Olsen phosphate, grain nitrogen, farmyard manure availability, and the type of cropping system were the best predictors of grain Zn concentration. Results suggested that organic wheat contained more Zn despite same yield level due to higher nutrient efficiency. Higher nutrient efficiency was also seen in organic wheat for P, N and S. The study thus suggests that appropriate farm management can lead to competitive yield and improved Zn concentration in wheat grains on organic farms.


Subject(s)
Edible Grain/chemistry , Organic Agriculture/methods , Triticum/chemistry , Zinc/analysis , Edible Grain/growth & development , Soil/chemistry , Triticum/growth & development
5.
Sci Total Environ ; 447: 515-24, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-22727995

ABSTRACT

Paper mill wastes are a mixture of by-products from pulp production and on-site energy production, consisting of paper mill sludge, ash and cinders. Landfilling of these highly boron (B) and heavy metal laden waste products carries environmental risks. Poplars have been successfully employed in the phytomanagement and hydraulic control of B contaminated sites. Here, we assess the performance of hybrid poplars on a paper-mill waste landfill, investigate the accumulation of B by the trees and explore the relationship between local-scale root growth and substrate properties. Leaf and root tissue samples were collected on three plots and analyzed for their chemical properties and root traits. Additionally, we sampled four soil cores in the vicinity of each of the trees and determined chemical and physical properties. Using a principal component analysis followed by a cluster analysis, we identified three substrate types. This method delineated the soil effects on tree survival and growth, although correlations with individual soil element concentrations were weak. Despite signs of B toxicity in some leaves, B was not the key limiting factor for poplar growth. Instead, Ca deficiency caused by a Mg:Ca imbalance was the primary reason for the poor performance of some trees. Root growth was not limited by toxicity effects of soil contaminants. Our results show that hybrid poplars perform well under the harsh growing conditions on a multi-contaminated, B-laden substrate in a hemiboreal climate. Exploiting the differences in the performance of the four clones in relation to the soil types, could increase the success of revegetation on this and other landfills.


Subject(s)
Boron/pharmacokinetics , Populus/growth & development , Populus/metabolism , Soil Pollutants/pharmacokinetics , Boron/toxicity , Chimera , Plant Leaves/chemistry , Plant Roots/chemistry , Plant Roots/drug effects , Plant Roots/growth & development , Populus/drug effects , Populus/genetics , Refuse Disposal , Regression Analysis , Soil Pollutants/toxicity , Wisconsin
6.
J Agric Food Chem ; 57(22): 10876-82, 2009 Nov 25.
Article in English | MEDLINE | ID: mdl-19883069

ABSTRACT

We performed a survey in central Iran to assess the variability in grain zinc (Zn), iron (Fe), and copper (Cu) concentrations of winter wheat and their relationships with soil and climate variables under field conditions. The goal was to identify factors that should be studied further to improve wheat cultivation in the study area with respect to the nutritional quality of this main Iranian staple crop. Soil and grain samples were collected from 137 randomly selected wheat fields in the provinces of Qom, Isfahan, and Fars. In general, soils were characterized by a high pH. Grain micronutrient concentrations ranged from 11.7 to 64.0 mg kg(-1) (mean, 31.6 mg kg(-1)) for Zn, from 21.1 to 96.6 mg kg(-1) (mean, 42.7 mg kg(-1)) for Fe, and from 2.4 to 9.3 mg kg(-1) (mean, 5.5 mg kg(-1)) for Cu. The grain concentrations of these three metals were positively correlated to each other. DTPA-extractable and total soil micronutrient concentrations alone were very poor predictors of grain micronutrient concentrations. Predictions were slightly improved when other soil and climate variables were taken into account (Zn, R2=0.26; Fe, R2=0.08; and Cu, R2=0.13).


Subject(s)
Climate , Copper/analysis , Soil/analysis , Triticum/chemistry , Triticum/growth & development , Zinc/analysis , Aluminum Silicates/analysis , Clay , Hydrogen-Ion Concentration , Iran , Iron/analysis , Regression Analysis , Seeds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL