Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Hum Genet ; 107(2): 311-324, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32738225

ABSTRACT

Aminoacyl-tRNA synthetases (ARSs) are ubiquitous, ancient enzymes that charge amino acids to cognate tRNA molecules, the essential first step of protein translation. Here, we describe 32 individuals from 21 families, presenting with microcephaly, neurodevelopmental delay, seizures, peripheral neuropathy, and ataxia, with de novo heterozygous and bi-allelic mutations in asparaginyl-tRNA synthetase (NARS1). We demonstrate a reduction in NARS1 mRNA expression as well as in NARS1 enzyme levels and activity in both individual fibroblasts and induced neural progenitor cells (iNPCs). Molecular modeling of the recessive c.1633C>T (p.Arg545Cys) variant shows weaker spatial positioning and tRNA selectivity. We conclude that de novo and bi-allelic mutations in NARS1 are a significant cause of neurodevelopmental disease, where the mechanism for de novo variants could be toxic gain-of-function and for recessive variants, partial loss-of-function.


Subject(s)
Aspartate-tRNA Ligase/genetics , Gain of Function Mutation/genetics , Loss of Function Mutation/genetics , Neurodevelopmental Disorders/genetics , RNA, Transfer, Amino Acyl/genetics , Alleles , Amino Acyl-tRNA Synthetases/genetics , Cell Line , Female , Genetic Predisposition to Disease/genetics , Humans , Male , Pedigree , RNA, Transfer/genetics , Stem Cells/physiology
2.
Hum Mol Genet ; 29(7): 1132-1143, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32129449

ABSTRACT

The molecular cause of the majority of rare autosomal recessive disorders remains unknown. Consanguinity due to extensive homozygosity unravels many recessive phenotypes and facilitates the detection of novel gene-disease links. Here, we report two siblings with phenotypic signs, including intellectual disability (ID), developmental delay and microcephaly from a Pakistani consanguineous family in which we have identified homozygosity for p(Tyr103His) in the PSMB1 gene (Genbank NM_002793) that segregated with the disease phenotype. PSMB1 encodes a ß-type proteasome subunit (i.e. ß6). Modeling of the p(Tyr103His) variant indicates that this variant weakens the interactions between PSMB1/ß6 and PSMA5/α5 proteasome subunits and thus destabilizes the 20S proteasome complex. Biochemical experiments in human SHSY5Y cells revealed that the p(Tyr103His) variant affects both the processing of PSMB1/ß6 and its incorporation into proteasome, thus impairing proteasome activity. CRISPR/Cas9 mutagenesis or morpholino knock-down of the single psmb1 zebrafish orthologue resulted in microcephaly, microphthalmia and reduced brain size. Genetic evidence in the family and functional experiments in human cells and zebrafish indicates that PSMB1/ß6 pathogenic variants are the cause of a recessive disease with ID, microcephaly and developmental delay due to abnormal proteasome assembly.


Subject(s)
Dwarfism/genetics , Microcephaly/genetics , Proteasome Endopeptidase Complex/genetics , Alleles , Animals , Child , Consanguinity , Developmental Disabilities/complications , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Dwarfism/complications , Female , Homozygote , Humans , Intellectual Disability/complications , Intellectual Disability/genetics , Intellectual Disability/pathology , Male , Microcephaly/complications , Microcephaly/pathology , Models, Molecular , Pedigree , Phenotype , Zebrafish/genetics
3.
Hum Mol Genet ; 29(4): 618-623, 2020 03 13.
Article in English | MEDLINE | ID: mdl-31903486

ABSTRACT

In a consanguineous Pakistani family with two affected individuals, a homozygous variant Gly399Val in the eighth transmembrane domain of the taurine transporter SLC6A6 was identified resulting in a hypomorph transporting capacity of ~15% compared with normal. Three-dimensional modeling of this variant has indicated that it likely causes displacement of the Tyr138 (TM3) side chain, important for transport of taurine. The affected individuals presented with rapidly progressive childhood retinal degeneration, cardiomyopathy and almost undetectable plasma taurine levels. Oral taurine supplementation of 100 mg/kg/day resulted in maintenance of normal blood taurine levels. Following approval by the ethics committee, a long-term supplementation treatment was introduced. Remarkably, after 24-months, the cardiomyopathy was corrected in both affected siblings, and in the 6-years-old, the retinal degeneration was arrested, and the vision was clinically improved. Similar therapeutic approaches could be employed in Mendelian phenotypes caused by the dysfunction of the hundreds of other molecular transporters.


Subject(s)
Cardiomyopathies/drug therapy , Membrane Glycoproteins/deficiency , Membrane Transport Proteins/deficiency , Retinal Degeneration/drug therapy , Taurine/therapeutic use , Adolescent , Biological Transport , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Child , Female , Humans , Male , Pedigree , Retinal Degeneration/metabolism , Retinal Degeneration/pathology
4.
Am J Hum Genet ; 105(5): 907-920, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31607425

ABSTRACT

We report two consanguineous families with probands that exhibit intellectual disability, developmental delay, short stature, aphasia, and hypotonia in which homozygous non-synonymous variants were identified in IQSEC1 (GenBank: NM_001134382.3). In a Pakistani family, the IQSEC1 segregating variant is c.1028C>T (p.Thr343Met), while in a Saudi Arabian family the variant is c.962G>A (p.Arg321Gln). IQSEC1-3 encode guanine nucleotide exchange factors for the small GTPase ARF6 and their loss affects a variety of actin-dependent cellular processes, including AMPA receptor trafficking at synapses. The ortholog of IQSECs in the fly is schizo and its loss affects growth cone guidance at the midline in the CNS, also an actin-dependent process. Overexpression of the reference IQSEC1 cDNA in wild-type flies is lethal, but overexpression of the two variant IQSEC1 cDNAs did not affect viability. Loss of schizo caused embryonic lethality that could be rescued to 2nd instar larvae by moderate expression of the human reference cDNA. However, the p.Arg321Gln and p.Thr343Met variants failed to rescue embryonic lethality. These data indicate that the variants behave as loss-of-function mutations. We also show that schizo in photoreceptors is required for phototransduction. Finally, mice with a conditional Iqsec1 deletion in cortical neurons exhibited an increased density of dendritic spines with an immature morphology. The phenotypic similarity of the affecteds and the functional experiments in flies and mice indicate that IQSEC1 variants are the cause of a recessive disease with intellectual disability, developmental delay, and short stature, and that axonal guidance and dendritic projection defects as well as dendritic spine dysgenesis may underlie disease pathogenesis.


Subject(s)
Developmental Disabilities/genetics , Dwarfism/genetics , Guanine Nucleotide Exchange Factors/genetics , Intellectual Disability/genetics , Mutation/genetics , Adult , Alleles , Animals , Child , Dendritic Spines/genetics , Drosophila/genetics , Female , Humans , Male , Mice , Saudi Arabia , Synapses/genetics , Young Adult
5.
Am J Hum Genet ; 104(6): 1073-1087, 2019 06 06.
Article in English | MEDLINE | ID: mdl-31079899

ABSTRACT

Cargo transport along the cytoplasmic microtubular network is essential for neuronal function, and cytoplasmic dynein-1 is an established molecular motor that is critical for neurogenesis and homeostasis. We performed whole-exome sequencing, homozygosity mapping, and chromosomal microarray studies in five individuals from three independent pedigrees and identified likely-pathogenic variants in DYNC1I2 (Dynein Cytoplasmic 1 Intermediate Chain 2), encoding a component of the cytoplasmic dynein 1 complex. In a consanguineous Pakistani family with three affected individuals presenting with microcephaly, severe intellectual disability, simplification of cerebral gyration, corpus callosum hypoplasia, and dysmorphic facial features, we identified a homozygous splice donor site variant (GenBank: NM_001378.2:c.607+1G>A). We report two additional individuals who have similar neurodevelopmental deficits and craniofacial features and harbor deleterious variants; one individual bears a c.740A>G (p.Tyr247Cys) change in trans with a 374 kb deletion encompassing DYNC1I2, and an unrelated individual harbors the compound-heterozygous variants c.868C>T (p.Gln290∗) and c.740A>G (p.Tyr247Cys). Zebrafish larvae subjected to CRISPR-Cas9 gene disruption or transient suppression of dync1i2a displayed significantly altered craniofacial patterning with concomitant reduction in head size. We monitored cell death and cell cycle progression in dync1i2a zebrafish models and observed significantly increased apoptosis, likely due to prolonged mitosis caused by abnormal spindle morphology, and this finding offers initial insights into the cellular basis of microcephaly. Additionally, complementation studies in zebrafish demonstrate that p.Tyr247Cys attenuates gene function, consistent with protein structural analysis. Our genetic and functional data indicate that DYNC1I2 dysfunction probably causes an autosomal-recessive microcephaly syndrome and highlight further the critical roles of the dynein-1 complex in neurodevelopment.


Subject(s)
Craniofacial Abnormalities/etiology , Dyneins/genetics , Intellectual Disability/etiology , Intracranial Arteriovenous Malformations/etiology , Microcephaly/etiology , Mutation , Zebrafish/growth & development , Adult , Alleles , Amino Acid Sequence , Animals , Child, Preschool , Craniofacial Abnormalities/pathology , Dyneins/chemistry , Dyneins/metabolism , Exome , Female , Homozygote , Humans , Infant , Intellectual Disability/pathology , Intracranial Arteriovenous Malformations/pathology , Male , Microcephaly/pathology , Pedigree , Phenotype , Protein Conformation , Sequence Homology , Exome Sequencing , Young Adult , Zebrafish/genetics , Zebrafish/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...