Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 799: 149424, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34375876

ABSTRACT

Urban agriculture (UA) is a means for cities to become more resilient in terms of food sovereignty while shortening the distance between production and consumption. However, intensive soilless UA still depends on the use of fertilizers, which relies on depleting non-renewable resources such as phosphorous (P) and causes both local and global impact for its production and application. With the aim to reduce such impacts and encourage a more efficient use of nutrients, this study assesses the feasibility of using struvite precipitated from an urban wastewater treatment plant as the unique source of P fertilizer. To do so, we apply various quantities of struvite (ranging from 1 to 20 g/plant) to the substrate of a hydroponic Phaseolus vulgaris crop and determine the yield, water flows and P balances. The results show that treatments with more than 5 g of struvite per plant produced a higher yield (maximum of 181.41 g/plant) than the control (134.6 g/plant) with mineral fertilizer (KPO4H2). On the other hand, P concentration in all plant organs was always lower when using struvite than when using chemical fertilizer. Finally, the fact that different amounts of struvite remained undissolved in all treatments denotes the importance to balance between a correct P supply to the plant and a decrease of P lost through the leachates, based on the amount of struvite and the irrigated water. The findings of this study show that it is feasible for UA to efficiently use locally recovered nutrients such as P to produce local food.


Subject(s)
Fertilizers , Phosphorus , Agriculture , Hydroponics , Phosphates , Struvite
2.
Sci Total Environ ; 794: 148689, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34323776

ABSTRACT

The rise of population in urban areas makes it ever more important to promote urban agriculture (UA) that is efficient in terms of water and nutrients. How to meet the irrigation demand of UA is of particular concern in urban areas where water sources are often limited. With the aim of determining how to reduce water use for irrigation while maintaining productivity and reducing environmental impacts in UA, this study explores the agronomic performance and environmental life cycle impacts and benefits of three different fertigation management practices used in a rooftop greenhouse for tomato crop in Barcelona: 1) open management (OP); 2) recirculation (RC), in which 30% of the drained, unused water is used to irrigate the crop; and 3) the same recirculated management of RC with a further reduction in fresh water input of 15%(RR). Despite the recirculation and reduction of water and nutrients, all three irrigation management practices resulted in similar yields: 16.2, 17.9, and 16.8·kg·m-2 for OP, RC, and RR, respectively. In terms of water-use efficiency, RR management was the most efficient, requiring 48.7·liters·kg-1 of tomato, followed by RC (52.4·L·kg-1) and OP (75.2·L·kg-1). RR presented an improvement of 7% in water-use efficiency. In terms of environmental performance, RC had the best performance in almost all impact categories during the operational phase, especially in regard to marine and freshwater eutrophication, with 44% and 93% fewer impacts than OP due to the recirculation of nutrients and reduced nutrient loss through leachates. In terms of infrastructure, even though recirculation management requires additional equipment, the materials present better performance in the range from 0.2 to 14% depending on the impact category. This study can support evaluation of agricultural projects in the city, through yields and water consumption presented, incentivizing good practices aligned with the sustainability of UA.


Subject(s)
Solanum lycopersicum , Agricultural Irrigation , Agriculture , Crops, Agricultural , Environment , Water
3.
Front Plant Sci ; 12: 649304, 2021.
Article in English | MEDLINE | ID: mdl-34113362

ABSTRACT

Soilless crop production is a viable way to promote vertical agriculture in urban areas, but it relies extensively on the use of mineral fertilizer. Thus, the benefits of fresher, local food and avoiding the transportation and packaging associated with food import could be counteracted by an increase in nutrient-rich wastewater, which could contribute to freshwater and marine eutrophication. The present study aimed to explore the use of mineral fertilizer substitutes in soilless agriculture. Phaseolus vulgaris (common bean) was fertilized with a combination of slow-releasing fertilizer struvite (a source of N, P, and Mg), which is a byproduct of wastewater treatment plants, and inoculation with Rhizobium (a N2-fixing soil bacteria). The experiment included three bean-production lines: (A) 2 g/plant of struvite and rhizobial inoculation; (B) 5 g/plant of struvite and rhizobial inoculation, both irrigated with a Mg-, P-, and N-free nutrient solution; and (C) a control treatment that consisted of irrigation with a full nutrient solution and no inoculation. Plant growth, development, yields, and nutrient contents were determined at 35, 62, and 84 days after transplanting as well as biological N2 fixation, which was determined using the 15N natural abundance method. Treatments A and B resulted in lower total yields per plant than the control C treatment (e.g., 59.35 ± 26.4 g plant-1 for A, 74.2 ± 23.0 g plant-1 for B, and 147.71 ± 45.3 g plant-1 for C). For A and B, the nodulation and N2 fixation capacities appeared to increase with the amount of initially available struvite, but, over time, deficient levels of Mg were reached as well as nearly deficient levels of P, which could explain the lower yields. Nevertheless, we conclude that the combination of struvite and N2-fixing bacteria covered the N needs of plants throughout the growth cycle. However, further studies are needed to determine the optimal struvite quantities for vertical agriculture systems that can meet the P and Mg requirements throughout the lifetime of the plants.

4.
J Sci Food Agric ; 101(14): 5888-5897, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33797092

ABSTRACT

BACKGROUND: Urban agriculture contributes to meeting the growing food production demand in cities. In the context of low water availability, it is important to consider alternatives that are able to maintain production. Through a circular economy vision, this study aimed to assess the use of substrates made from local materials as an alternative for urban agriculture in periods of low water availability, due to water supply cuts. The substrates used were coir commercial organic substrate, vegetable compost from urban organic waste and perlite commercial standard substrate; a mixture of the urban compost and perlite (1:1) was used for three consecutive crop cycles of lettuce (Lactuca sativa L. var. crispa). The crop cycles were performed in the spring and summer periods of 2018 to observe the performance during warmer periods of the year in an integrated rooftop greenhouse near Barcelona. Each substrate was assessed under conventional irrigation (0-5 kPa) and temporary water restricted conditions (irrigation stopped until the water tension reached -20 kPa perlite). RESULTS: In terms of yield, our results show that the compost and mixture were similar to those obtained from perlite (11.5% and 3.7% more production under restricted water conditions). Organic substrates increased the crop's resilience to water restriction, in contrast to the perlite. In particular, water loss took longer in coir (one- and two-crop cycle); however, when dryness began, it occurred quickly. CONCLUSION: The vegetable compost and the substrate mixture presented tolerance to temporary water restriction when water restriction reached -20 kPa. © 2021 Society of Chemical Industry.


Subject(s)
Crop Production/methods , Lactuca/growth & development , Cities , Crop Production/instrumentation , Droughts , Lactuca/metabolism , Mediterranean Region , Soil/chemistry , Water/analysis , Water/metabolism
5.
Sci Total Environ ; 770: 144744, 2021 May 20.
Article in English | MEDLINE | ID: mdl-33736378

ABSTRACT

Urban agriculture, while being a promising solution to increase food sovereignty in cities, can lead to an unprecedented discharge of nutrient and fertilizer-related emissions into the urban environment. Especially relevant are nitrogen (N) and phosphorus (P), due to their contribution to marine and freshwater eutrophication. Therefore, alternative methods of fertilization need to be put into practice to avoid such impacts to the surrounding environment. Struvite, has been studied as a potential slow releasing fertilizer due to its high P content, while the bacteria rhizobium has been used to fix N directly from the atmosphere. Legumes, like the common bean are N-demanding crops capable of symbiosis with the bacteria rhizobium and have previously shown positive responses to fertilization with struvite. This study aims to analyze the environmental performance of plant production in hydroponic systems combining rhizobium inoculation and struvite (2 g, 5 g, 10 g, 20 g) irrigated with a N and P deficient nutrient solution, using life cycle analysis (LCA). The nutrient content of in- and out-going irrigation was analyzed as well as in plants and beans. The functional unit for the LCA was 1 kg of fresh beans. The results obtained indicate a yield reduction of 60% to 50% in comparison to the control which was irrigated with a full nutrient solution. The impacts from operational stage are less in all impact categories, where most significant reductions up to 69% and 59% are seen in marine-eutrophication and global warming respectively. Although the infrastructure does not change between treatments, its impacts increase due to the lower yields. We determine that below a 10% of the control yield, the alternative systems have more impact than the use of conventional mineral fertilizers in almost all impact categories, thus pointing to the importance of infrastructure to truly reduce environmental impacts for urban agriculture.


Subject(s)
Phaseolus , Rhizobium , Cities , Fertilizers/analysis , Nitrogen/analysis , Struvite
6.
Front Plant Sci ; 11: 596550, 2020.
Article in English | MEDLINE | ID: mdl-33281854

ABSTRACT

Urban agriculture systems can significantly contribute towards mitigating the impacts of inefficient and complex food supply chains and increase urban food sovereignty. Moreover, improving these urban agriculture systems in terms of nutrient management can lead to a better environmental performance. Based on a rooftop greenhouse in the Barcelona region, we propose a cascade system where the leachates of a tomato cycle from January to July (donor crop) are used as the main irrigation source for five successive lettuce cycles (receiving crop). By determining the agronomic performance and the nutrient metabolism of the system, we aimed to define the potential of these systems to avoid nutrient depletion and mitigate eutrophication, while scaling the system in terms of nutrient supply between the donor and the receiving crops. The results showed that low yields (below 130 g per lettuce plant) are obtained if a cascade system is used during the early stage of the donor crop, as the amount of nutrients in donor's leachates, specially N (62.4 mg irrigated per plant in the first cycle), was not enough to feed the lettuce receiving crop. This effect was also observed in the nutrient content of the lettuce, which increased with every test until equaling the control (4.4% of N content) as the leachates got richer, although too high electrical conductivity values (near 3 dS/m) were reached at the end of the donor crop cycle. Findings on the uptake of the residual nutrient flows showed how the cascade system was able to take advantage of the nutrients to produce local lettuce while mitigating the effect of N and P in the freshwater and marine environments. Considering our case study, we finally quantified the scale between the donor and receiving crops and proposed three major ideas to optimize the nutrient flows while maintaining the yield and quality of the vegetables produced in the receiving crop.

7.
Physiol Rep ; 8(15): e14455, 2020 08.
Article in English | MEDLINE | ID: mdl-32748551

ABSTRACT

The aim of this study was to determine the acute effects of high-intensity interval training (HIIT) exercise and endurance exercise (EE) on pulmonary function, sympathetic/parasympathetic balance, and cardiorespiratory coupling (CRC) in healthy participants. Using a crossover repeated-measurements design, four females and four males were exposed to EE (20 min at 80% maximal heart rate [HR]), HIIT (1 min of exercise at 90% maximal HR per 1 min of rest, 10 times), or control condition (resting). Pulmonary function, HR, CRC, and heart rate variability (HRV) were assessed before and after the interventions. Results revealed no significant effects of EE or HIIT on pulmonary function. The EE, but not HIIT, significantly increased CRC. In contrast, HRV was markedly changed by HIIT, not by EE. Indeed, both the low-frequency (LFHRV ) and high-frequency (HFHRV ) components of HRV were increased and decreased, respectively, after HIIT. The increase in LFHRV was greater after HIIT than after EE. Therefore, a single bout of HIIT or EE has no effects on pulmonary function. Moreover, CRC and cardiac autonomic regulation are targeted differently by the two exercise modalities.


Subject(s)
Endurance Training/methods , Heart Rate , High-Intensity Interval Training/methods , Respiration , Adult , Blood Pressure , Endurance Training/adverse effects , Female , High-Intensity Interval Training/adverse effects , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...