Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(23): 30107-30116, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38809223

ABSTRACT

The electrochemical reduction of CO2 (CO2RR) has the potential to be an economically viable method to produce platform chemicals synergistically with renewable energy sources. Copper is one of the most commonly used electrocatalysts for this purpose, as it allows C-C bond formation, yielding a broad product distribution. Controlling selectivity is a stepping stone on the way to its industrial application. The kinetics of the reaction can be modified to favor the rates of certain products quickly and inexpensively by applying additives such as ionic liquids and coelectrolytes that directly affect the electrocatalytic interface. In this work, we propose tethered tetraalkylammonium salts as double-charged cationic modifiers of the electrochemical double layer to control CO2RR product selectivity. A novel setup comprising a gas diffusion electrode (GDE) flow cell coupled with real-time mass spectroscopy was used to study the effect of a library of the selected salts. We emphasize how the length of an alkyl linker effectively controls the selectivity of the reaction toward C1, C2, or C3 products at high relevant current densities (Jtotal = -400 mA cm-2) along with the inhibition of the parasitic hydrogen evolution reaction. Standard long-term experiments were performed for quantitative validation and stability evaluation. These results have broad implications for further tailoring an effective catalytic system for selective CO2 reduction reaction.

2.
ChemSusChem ; 16(23): e202300934, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37544913

ABSTRACT

This study presents a green, ultra-fast, and facile technique for the fabrication of micro/nano-structured and porous Cu electrodes through in-liquid plasma electrolysis using phosphorous-oxoanion-based electrolytes. Besides the preferential surface faceting, the Cu electrodes exhibit unique surface structures, including octahedral nanocrystals besides nanoporous and microporous structures, depending on the employed electrolyte. The incorporation of P-atoms into the Cu surfaces is observed. The modified Cu electrodes display increased roughness, leading to higher current densities for CO2 electroreduction reaction. The selectivity of the modified Cu electrodes towards C2 products is highest for the Cu electrodes treated in Na2 HPO3 and Na3 PO4 electrolytes, whereas those treated in Na2 H2 PO2 produce the most H2 . The Cu electrode treated in Na3 PO4 produces ethylene (23 %) at -1.1 V vs. RHE, and a comparable amount of acetaldehyde (15 %) that is typically observed for Cu(110) single crystals. The enhanced selectivity is attributed to several factors, including the surface morphology, the incorporation of phosphorus into the Cu structure, and the formation of Cu(110) facets. Our results not only advance our understanding of the influence of the electrolyte's nature on the plasma electrolysis of Cu electrodes, but also underscores the potential of in-liquid plasma treatment for developing efficient Cu electrocatalysts for sustainable CO2 conversion.

3.
Chem Sci ; 13(37): 11205-11214, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36320464

ABSTRACT

Copper electrodes produce several industrially relevant chemicals and fuels during the electrochemical CO2 reduction reaction (CO2RR). Knowledge about the reaction pathways can help tune the reaction selectivity toward higher-value products. To probe the uncertain role of the C2 molecule glyoxal, we electrochemically reduced it on polycrystalline Cu and quantified its liquid-phase products, namely, ethanol, ethylene glycol, and acetaldehyde. The gas phase contained hydrogen and traces of ethylene. In contrast with previous hypothesis, a one-to-one comparison with CO2RR on Cu indicates that glyoxal is neither a major intermediate in the pathway toward ethylene nor in the pathway toward ethanol. In addition, great possibilities for the selective, low-temperature production of ethylene glycol are open, as computational modelling shows that ethylene glycol and ethanol are produced on different active sites. Thus, apart from the mechanistic insight into CO2RR, this study gives new directions to facilitate the electrification of chemical processes at refineries.

4.
ACS Appl Mater Interfaces ; 14(12): 14193-14201, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35302346

ABSTRACT

Ionic liquids (ILs) are capable of tuning the kinetics of electroreduction processes by modifying a catalyst interface. In this work, a group of hydrophobic imidazolium-based ILs were immobilized on Ag foams by using a procedure known as "solid catalyst with ionic liquid layer" (SCILL). The derived electrocatalysts demonstrated altered selectivity and CO production rates for the electrochemical reduction of CO2 compared to the unmodified Ag foam. The activity change caused by the IL was dependent on the length of the N-alkyl substituent. The rate of CO production is optimized at moderate chain length and IL loadings. The observed trends are attributed to a local enrichment of CO2-based species in the proximity of the catalyst and a modification of the environment of its active sites. On the contrary, high loadings or long IL chains render the surface inaccessible and favor the hydrogen evolution reaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...