Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Gut Microbes ; 16(1): 2315633, 2024.
Article in English | MEDLINE | ID: mdl-38358253

ABSTRACT

Xanthohumol (XN), a polyphenol found in the hop plant (Humulus lupulus), has antioxidant, anti-inflammatory, prebiotic, and anti-hyperlipidemic activity. Preclinical evidence suggests the gut microbiome is essential in mediating these bioactivities; however, relatively little is known about XN's impact on human gut microbiota in vivo. We conducted a randomized, triple-blinded, placebo-controlled clinical trial (ClinicalTrials.gov NCT03735420) to determine safety and tolerability of XN in healthy adults. Thirty healthy participants were randomized to 24 mg/day XN or placebo for 8 weeks. As secondary outcomes, quantification of bacterial metabolites and 16S rRNA gene sequencing were utilized to explore the relationships between XN supplementation, gut microbiota, and biomarkers of gut health. Although XN did not significantly change gut microbiota composition, it did re-shape individual taxa in an enterotype-dependent manner. High levels of inter-individual variation in metabolic profiles and bioavailability of XN metabolites were observed. Moreover, reductions in microbiota-derived bile acid metabolism were observed, which were specific to Prevotella and Ruminococcus enterotypes. These results suggest interactions between XN and gut microbiota in healthy adults are highly inter-individualized and potentially indicate that XN elicits effects on gut health in an enterotype-dependent manner.


Subject(s)
Gastrointestinal Microbiome , Propiophenones , Adult , Humans , RNA, Ribosomal, 16S/genetics , Flavonoids/pharmacology , Prebiotics
2.
RSC Adv ; 13(42): 29324-29331, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37829707

ABSTRACT

Xanthohumol, the principle prenylflavonoid found in hops (Humulus lupulus) and a reported anti-inflammatory agent, has great potential for pharmaceutical interventions related to inflammatory disorders in the gut. A suite of probes was prepared from xanthohumol and its structural isomer isoxanthohumol to enable profiling of both protein affinity binding and catalytic enzyme reactivity. The regiochemistry of the reactive group on the probes was altered to reveal how probe structure dictates protein labeling, and which probes best emulate the natural flavonoids. Affinity- and activity-based probes were applied to Escherichia coli, and protein labeling was measured by chemoproteomics. Structurally dependent activity-based probe protein labeling demonstrates how subtle alterations in flavonoid structure and probe reactive groups can result in considerably different protein interactions. This work lays the groundwork to expand upon unexplored cellular activities related to xanthohumol interactions, metabolism, and anti-inflammatory mechanisms.

3.
Dis Model Mech ; 15(11)2022 11 01.
Article in English | MEDLINE | ID: mdl-36353888

ABSTRACT

Xanthohumol (XN) improves cognition of wild-type rodents on a high-fat diet (HFD). Bile acids and ceramide levels in the liver and hippocampus might be linked to these effects. XN modulates activity of the nuclear farnesoid X receptor (FXR; also known as NR1H4), the primary receptor for bile acids. To determine the role of FXR in the liver and intestine in mediating the effects of XN on cognitive performance, mice with intestine- and liver-specific FXR ablation (FXRIntestine-/- and FXRLiver-/-, respectively) on an HFD or an HFD containing XN were cognitively tested. XN improved cognitive performance in a genotype- and sex-dependent manner, with improved task learning in females (specifically wild-type), reversal learning in males (specifically wild-type and FXRIntestine-/- mutant) and spatial learning (both sexes). XN increased hippocampal diacylglycerol and sphingomyelin levels in females but decreased them in males. XN increased the ratio of shorter-chain to longer-chain ceramides and hexaceramides. Higher diacylglycerol and lower longer-chain ceramide and hexaceramide levels were linked to improved cognitive performance. Thus, the beneficial sex-dependent cognitive effects of XN are linked to changes in hippocampal diacylglycerol and ceramide levels. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Diet, High-Fat , Diglycerides , Male , Mice , Animals , Liver , Bile Acids and Salts , Ceramides , Cognition , Mice, Inbred C57BL
4.
Front Pharmacol ; 13: 954980, 2022.
Article in English | MEDLINE | ID: mdl-36278228

ABSTRACT

Consumption of a high fat diet (HFD) is linked to metabolic syndrome and cognitive impairments. This is exacerbated in age-related cognitive decline (ACD) and in individuals with a genetic risk for Alzheimer's disease (AD). Apolipoprotein E (apoE) is involved in cholesterol metabolism. In humans, there are three major isoforms, E2, E3, and E4. Compared to E3, E4 increases ACD and AD risk and vulnerability to the deleterious cognitive effects of a HFD. The plant compound Xanthohumol (XN) had beneficial effects on cognition and metabolism in C57BL/6J wild-type (WT) male mice put on a HFD at 9 weeks of age for 13 weeks. As the effects of XN in the context of a HFD in older WT, E3, and E4 female and male mice are not known, in the current study male and female WT, E3, and E4 mice were fed a HFD alone or a HFD containing 0.07% XN for 10 or 19 weeks, starting at 6 months of age, prior to the beginning of behavioral and cognitive testing. XN showed sex- and ApoE isoform-dependent effects on cognitive performance. XN-treated E4 and WT, but not E3, mice had higher glucose transporter protein levels in the hippocampus and cortex than HFD-treated mice. E3 and E4 mice had higher glucose transporter protein levels in the hippocampus and lower glucose transporter protein levels in the cortex than WT mice. In the standard experiment, regardless of XN treatment, E4 mice had nearly double as high ceramide and sphingomyelin levels than E3 mice and male mice had higher level of glycosylated ceramide than female mice. When the differential effects of HFD in E3 and E4 males were assessed, the arginine and proline metabolism pathway was affected. In the extended exposure experiment, in E3 males XN treatment affected the arginine and proline metabolism and the glycine, serine, and threonine metabolism. Myristic acid levels were decreased in XN-treated E3 males but not E3 females. These data support the therapeutic potential for XN to ameliorate HFD-induced cognitive impairments and highlight the importance of considering sex and ApoE isoform in determining who might most benefit from this dietary supplement.

5.
ACS Pharmacol Transl Sci ; 4(6): 1782-1793, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34927010

ABSTRACT

The energy intake exceeding energy expenditure (EE) results in a positive energy balance, leading to storage of excess energy and weight gain. Here, we investigate the potential of a newly synthesized compound as an inducer of EE for the management of diet-induced obesity and insulin resistance. Xanthohumol (XN), a prenylated flavonoid from hops, was used as a precursor for the synthesis of a pyrazole derivative tested for its properties on high-fat diet (HFD)-induced metabolic impairments. In a comparative study with XN, we report that 4-(5-(4-hydroxyphenyl)-1-methyl-1H-pyrazol-3-yl)-5-methoxy-2-(3-methylbut-2-en-1-yl)benzene-1,3-diol (XP) uncouples oxidative phosphorylation in C2C12 cells. In HFD-fed mice, XP improved glucose tolerance and decreased weight gain by increasing EE and locomotor activity. Using an untargeted metabolomics approach, we assessed the effects of treatment on metabolites and their corresponding biochemical pathways. We found that XP and XN reduced purine metabolites and other energy metabolites in the plasma of HFD-fed mice. The induction of locomotor activity was associated with an increase in inosine monophosphate in the cortex of XP-treated mice. Together, these results suggest that XP, better than XN, affects mitochondrial respiration and cellular energy metabolism to prevent obesity in HFD-fed mice.

6.
Front Pharmacol ; 12: 643857, 2021.
Article in English | MEDLINE | ID: mdl-33959012

ABSTRACT

The farnesoid X receptor (FXR) plays a critical role in the regulation of lipid and bile acid (BA) homeostasis. Hepatic FXR loss results in lipid and BA accumulation, and progression from hepatic steatosis to nonalcoholic steatohepatitis (NASH). This study aimed to evaluate the effects of xanthohumol (XN), a hop-derived compound mitigating metabolic syndrome, on liver damage induced by diet and FXR deficiency in mice. Wild-type (WT) and liver-specific FXR-null mice (FXRLiver-/-) were fed a high-fat diet (HFD) containing XN or the vehicle formation followed by histological characterization, lipid, BA and gene profiling. HFD supplemented with XN resulted in amelioration of hepatic steatosis and decreased BA concentrations in FXRLiver-/- mice, the effect being stronger in male mice. XN induced the constitutive androstane receptor (CAR), pregnane X receptor (PXR) and glucocorticoid receptor (GR) gene expression in the liver of FXRLiver-/- mice. These findings suggest that activation of BA detoxification pathways represents the predominant mechanism for controlling hydrophobic BA concentrations in FXRLiver-/- mice. Collectively, these data indicated sex-dependent relationship between FXR, lipids and BAs, and suggest that XN ameliorates HFD-induced liver dysfunction via FXR-dependent and independent signaling.

7.
Curr Opin Food Sci ; 32: 149-155, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32923374

ABSTRACT

The coronavirus disease 2019 (COVID-19) is a public health emergency of international concern. The rising number of cases of this highly transmissible infection has stressed the urgent need to find a potent drug. Although repurposing of known drugs currently provides an accelerated route to approval, there is no satisfactory treatment. Polyphenols, a major class of bioactive compounds in nature, are known for their antiviral activity and pleiotropic effects. The aim of this review is to assess the effects of polyphenols on COVID-19 drug targets as well as to provide a perspective on the possibility to use polyphenols in the development of natural approaches against this viral disease.

8.
Mol Nutr Food Res ; 64(15): e2000341, 2020 08.
Article in English | MEDLINE | ID: mdl-32627931

ABSTRACT

SCOPE: Sphingolipids including ceramides are implicated in the pathogenesis of obesity and insulin resistance. Correspondingly, inhibition of pro-inflammatory and neurotoxic ceramide accumulation prevents obesity-mediated insulin resistance and cognitive impairment. Increasing evidence suggests the farnesoid X receptor (FXR) is involved in ceramide metabolism, as bile acid-FXR crosstalk controls ceramide levels along the gut-liver axis. The authors previously reported that FXR agonist xanthohumol (XN), the principal prenylated flavonoid in hops (Humulus lupulus), and its hydrogenated derivatives, α,ß-dihydroxanthohumol (DXN), and tetrahydroxanthohumol (TXN), ameliorated obesity-mediated insulin resistance, and cognitive impairment in mice fed a high-fat diet. METHODS AND RESULTS: To better understand how the flavonoids improve both, lipid and bile acid profiles in the liver are analyzed, sphingolipid relative abundance in the hippocampus is measured, and linked them to metabolic and neurocognitive performance. XN, DXN, and TXN (30 mg kg-1 BW per day) decrease ceramide content in liver and hippocampus; the latter is linked to improvements in spatial learning and memory. In addition, XN, DXN, and TXN decrease hepatic cholesterol content by enhancing de novo synthesis of bile acids. CONCLUSION: These observations suggest that XN, DXN, and TXN may alleviate obesity-induced metabolic and neurocognitive impairments by targeting the liver-brain axis.


Subject(s)
Brain/drug effects , Flavonoids/pharmacology , Humulus/chemistry , Lipid Metabolism/drug effects , Liver/drug effects , Animals , Bile Acids and Salts/analysis , Bile Acids and Salts/metabolism , Brain/metabolism , Ceramides/genetics , Ceramides/metabolism , Chenodeoxycholic Acid/pharmacology , Cognition/drug effects , Diet, High-Fat/adverse effects , Flavonoids/chemistry , Gene Expression Regulation/drug effects , Hep G2 Cells , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Hypolipidemic Agents/chemistry , Hypolipidemic Agents/pharmacology , Liver/metabolism , Male , Mice, Inbred C57BL , Propiophenones/pharmacology
9.
Mol Nutr Food Res ; 63(2): e1800923, 2019 01.
Article in English | MEDLINE | ID: mdl-30471194

ABSTRACT

SCOPE: The intestinal microbiota transforms a wide range of available substrates, including polyphenols. Microbial catabolites of polyphenols can contribute in significant ways to the health-promoting properties of their parent polyphenols. This work aims to identify intestinal metabolites of xanthohumol (XN), a prenylated flavonoid found in hops (Humulus lupulus) and beer, as well as to identify pathways of metabolism of XN in the gut. METHODS AND RESULTS: To investigate intestinal metabolism, XN and related prenylated flavonoids, isoxanthohumol (IX), and 8-prenylnaringenin (8PN) were added to growing cultures of intestinal bacteria, Eubacterium ramulus and E. limosum. Liquid chromatography coupled with mass spectrometry was used to identify metabolites of the flavonoids from the cultures. The metabolic capacity of E. limosum appears to be limited to O-demethylation. Evidence from the study indicates that E. ramulus hydrogenates XN to form α,ß-dihydroxanthohumol (DXN) and metabolizes the potent phytoestrogen 8PN into the chalcones, O-desmethylxanthohumol (DMX) and O-desmethyl-α,ß-dihydroxanthohumol (DDXN). CONCLUSION: Microbial metabolism is likely to affect both activity and toxicity of XN and derivatives. This study along with others highlights that attention should be focused on metabolites, in particular, products of intestinal microbial metabolism.


Subject(s)
Eubacterium/metabolism , Flavanones/metabolism , Flavonoids/metabolism , Intestines/microbiology , Propiophenones/metabolism , Tandem Mass Spectrometry , Xanthones/metabolism
10.
Sci Rep ; 8(1): 613, 2018 01 12.
Article in English | MEDLINE | ID: mdl-29330372

ABSTRACT

Xanthohumol (XN), a prenylated flavonoid from hops, improves dysfunctional glucose and lipid metabolism in animal models of metabolic syndrome (MetS). However, its metabolic transformation into the estrogenic metabolite, 8-prenylnaringenin (8-PN), poses a potential health concern for its use in humans. To address this concern, we evaluated two hydrogenated derivatives, α,ß-dihydro-XN (DXN) and tetrahydro-XN (TXN), which showed negligible affinity for estrogen receptors α and ß, and which cannot be metabolically converted into 8-PN. We compared their effects to those of XN by feeding C57BL/6J mice a high-fat diet (HFD) containing XN, DXN, or TXN for 13 weeks. DXN and TXN were present at higher concentrations than XN in plasma, liver and muscle. Mice administered XN, DXN or TXN showed improvements of impaired glucose tolerance compared to the controls. DXN and TXN treatment resulted in a decrease of HOMA-IR and plasma leptin. C2C12 embryonic muscle cells treated with DXN or TXN exhibited higher rates of uncoupled mitochondrial respiration compared to XN and the control. Finally, XN, DXN, or TXN treatment ameliorated HFD-induced deficits in spatial learning and memory. Taken together, DXN and TXN could ameliorate the neurocognitive-metabolic impairments associated with HFD-induced obesity without risk of liver injury and adverse estrogenic effects.


Subject(s)
Cognitive Dysfunction/drug therapy , Diet, High-Fat/adverse effects , Flavanones/administration & dosage , Flavonoids/chemistry , Metabolic Syndrome/drug therapy , Obesity/complications , Propiophenones/chemistry , Animals , Cell Line , Disease Models, Animal , Flavanones/chemistry , Flavanones/pharmacokinetics , Humans , Liver/chemistry , MCF-7 Cells , Male , Mice , Muscles/chemistry , Obesity/chemically induced , Plasma/chemistry , Spatial Learning/drug effects , Spatial Memory/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...