Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
Add more filters










Publication year range
1.
Front Immunol ; 15: 1384417, 2024.
Article in English | MEDLINE | ID: mdl-38726013

ABSTRACT

Nipah virus (NiV) poses a significant threat to human and livestock populations across South and Southeast Asia. Vaccines are required to reduce the risk and impact of spillover infection events. Pigs can act as an intermediate amplifying host for NiV and, separately, provide a preclinical model for evaluating human vaccine candidate immunogenicity. The aim of this study was therefore to evaluate the immunogenicity of an mRNA vectored NiV vaccine candidate in pigs. Pigs were immunized twice with 100 µg nucleoside-modified mRNA vaccine encoding soluble G glycoprotein from the Malaysia strain of NiV, formulated in lipid nanoparticles. Potent antigen-binding and virus neutralizing antibodies were detected in serum following the booster immunization. Antibody responses effectively neutralized both the Malaysia and Bangladesh strains of NiV but showed limited neutralization of the related (about 80% amino acid sequence identity for G) Hendra virus. Antibodies were also capable of neutralizing NiV glycoprotein mediated cell-cell fusion. NiV G-specific T cell cytokine responses were also measurable following the booster immunization with evidence for induction of both CD4 and CD8 T cell responses. These data support the further evaluation of mRNA vectored NiV G as a vaccine for both pigs and humans.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Henipavirus Infections , Nipah Virus , Viral Vaccines , Animals , Nipah Virus/immunology , Nipah Virus/genetics , Swine , Henipavirus Infections/prevention & control , Henipavirus Infections/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Antibodies, Viral/blood , Antibodies, Viral/immunology , Swine Diseases/immunology , Swine Diseases/prevention & control , Swine Diseases/virology , RNA, Messenger/genetics , RNA, Messenger/immunology , Immunogenicity, Vaccine , Immunization, Secondary , Cytokines/immunology , Vaccines, Synthetic/immunology , Liposomes , Nanoparticles
2.
Cell Host Microbe ; 32(5): 693-709.e7, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38670093

ABSTRACT

A major goal of HIV-1 vaccine development is the induction of broadly neutralizing antibodies (bnAbs). Although success has been achieved in initiating bnAb B cell lineages, design of boosting immunogens that select for bnAb B cell receptors with improbable mutations required for bnAb affinity maturation remains difficult. Here, we demonstrate a process for designing boosting immunogens for a V3-glycan bnAb B cell lineage. The immunogens induced affinity-matured antibodies by selecting for functional improbable mutations in bnAb precursor knockin mice. Moreover, we show similar success in prime and boosting with nucleoside-modified mRNA-encoded HIV-1 envelope trimer immunogens, with improved selection by mRNA immunogens of improbable mutations required for bnAb binding to key envelope glycans. These results demonstrate the ability of both protein and mRNA prime-boost immunogens for selection of rare B cell lineage intermediates with neutralizing breadth after bnAb precursor expansion, a key proof of concept and milestone toward development of an HIV-1 vaccine.


Subject(s)
AIDS Vaccines , Antibodies, Neutralizing , B-Lymphocytes , HIV Antibodies , HIV-1 , AIDS Vaccines/immunology , AIDS Vaccines/genetics , Animals , HIV Antibodies/immunology , HIV-1/immunology , HIV-1/genetics , Mice , Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , Humans , HIV Infections/immunology , HIV Infections/prevention & control , Broadly Neutralizing Antibodies/immunology , Mutation , Vaccine Development , Immunization, Secondary , env Gene Products, Human Immunodeficiency Virus/immunology , env Gene Products, Human Immunodeficiency Virus/genetics
3.
Mol Ther ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605519

ABSTRACT

The role of CD8+ T cells in SARS-CoV-2 pathogenesis or mRNA-LNP vaccine-induced protection from lethal COVID-19 is unclear. Using mouse-adapted SARS-CoV-2 virus (MA30) in C57BL/6 mice, we show that CD8+ T cells are unnecessary for the intrinsic resistance of female or the susceptibility of male mice to lethal SARS-CoV-2 infection. Also, mice immunized with a di-proline prefusion-stabilized full-length SARS-CoV-2 Spike (S-2P) mRNA-LNP vaccine, which induces Spike-specific antibodies and CD8+ T cells specific for the Spike-derived VNFNFNGL peptide, are protected from SARS-CoV-2 infection-induced lethality and weight loss, while mice vaccinated with mRNA-LNPs encoding only VNFNFNGL are protected from lethality but not weight loss. CD8+ T cell depletion ablates protection in VNFNFNGL but not in S-2P mRNA-LNP-vaccinated mice. Therefore, mRNA-LNP vaccine-induced CD8+ T cells are dispensable when protective antibodies are present but essential for survival in their absence. Hence, vaccine-induced CD8+ T cells may be critical to protect against SARS-CoV-2 variants that mutate epitopes targeted by protective antibodies.

4.
Nat Immunol ; 25(4): 633-643, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38486021

ABSTRACT

Vaccines have reduced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) morbidity and mortality, yet emerging variants challenge their effectiveness. The prevailing approach to updating vaccines targets the antibody response, operating under the presumption that it is the primary defense mechanism following vaccination or infection. This perspective, however, can overlook the role of T cells, particularly when antibody levels are low or absent. Here we show, through studies in mouse models lacking antibodies but maintaining functional B cells and lymphoid organs, that immunity conferred by prior infection or mRNA vaccination can protect against SARS-CoV-2 challenge independently of antibodies. Our findings, using three distinct models inclusive of a novel human/mouse ACE2 hybrid, highlight that CD8+ T cells are essential for combating severe infections, whereas CD4+ T cells contribute to managing milder cases, with interferon-γ having an important function in this antibody-independent defense. These findings highlight the importance of T cell responses in vaccine development, urging a broader perspective on protective immunity beyond just antibodies.


Subject(s)
COVID-19 , Vaccines , Humans , Animals , Mice , SARS-CoV-2 , CD8-Positive T-Lymphocytes , COVID-19/prevention & control , Antibodies , Vaccination , Antibodies, Viral , Antibodies, Neutralizing
5.
Nat Commun ; 15(1): 2092, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453904

ABSTRACT

Prime editing is a highly versatile genome editing technology that enables the introduction of base substitutions, insertions, and deletions. However, compared to traditional Cas9 nucleases prime editors (PEs) are less active. In this study we use OrthoRep, a yeast-based platform for directed protein evolution, to enhance the editing efficiency of PEs. After several rounds of evolution with increased selection pressure, we identify multiple mutations that have a positive effect on PE activity in yeast cells and in biochemical assays. Combining the two most effective mutations - the A259D amino acid substitution in nCas9 and the K445T substitution in M-MLV RT - results in the variant PE_Y18. Delivery of PE_Y18, encoded on DNA, mRNA or as a ribonucleoprotein complex into mammalian cell lines increases editing rates up to 3.5-fold compared to PEmax. In addition, PE_Y18 supports higher prime editing rates when delivered in vivo into the liver or brain. Our study demonstrates proof-of-concept for the application of OrthoRep to optimize genome editing tools in eukaryotic cells.


Subject(s)
Biological Assay , Saccharomyces cerevisiae , Animals , Saccharomyces cerevisiae/genetics , Amino Acid Substitution , Brain , Cell Line , CRISPR-Cas Systems/genetics , Mammals
6.
NPJ Vaccines ; 9(1): 38, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378950

ABSTRACT

Human cytomegalovirus (HCMV) remains the most common congenital infection and infectious complication in immunocompromised patients. The most successful HCMV vaccine to date, an HCMV glycoprotein B (gB) subunit vaccine adjuvanted with MF59, achieved 50% efficacy against primary HCMV infection. A previous study demonstrated that gB/MF59 vaccinees were less frequently infected with HCMV gB genotype strains most similar to the vaccine strain than strains encoding genetically distinct gB genotypes, suggesting strain-specific immunity accounted for the limited efficacy. To determine whether vaccination with multiple HCMV gB genotypes could increase the breadth of anti-HCMV gB humoral and cellular responses, we immunized 18 female rabbits with monovalent (gB-1), bivalent (gB-1+gB-3), or pentavalent (gB-1+gB-2+gB-3+gB-4+gB-5) gB lipid nanoparticle-encapsulated nucleoside-modified RNA (mRNA-LNP) vaccines. The multivalent vaccine groups did not demonstrate a higher magnitude or breadth of the IgG response to the gB ectodomain or cell-associated gB compared to that of the monovalent vaccine. Also, the multivalent vaccines did not show an increase in the breadth of neutralization activity and antibody-dependent cellular phagocytosis against HCMV strains encoding distinct gB genotypes. Interestingly, peripheral blood mononuclear cell-derived gB-2-specific T-cell responses elicited by multivalent vaccines were of a higher magnitude compared to that of monovalent vaccinated animals against a vaccine-mismatched gB genotype at peak immunogenicity. Yet, no statistical differences were observed in T cell response against gB-3 and gB-5 variable regions among the three vaccine groups. Our data suggests that the inclusion of multivalent gB antigens is not an effective strategy to increase the breadth of anti-HCMV gB antibody and T cell responses. Understanding how to increase the HCMV vaccine protection breadth will be essential to improve the vaccine efficacy.

8.
bioRxiv ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38370696

ABSTRACT

Immunization with mosaic-8b [60-mer nanoparticles presenting 8 SARS-like betacoronavirus (sarbecovirus) receptor-binding domains (RBDs)] elicits more broadly cross-reactive antibodies than homotypic SARS-CoV-2 RBD-only nanoparticles and protects against sarbecoviruses. To investigate original antigenic sin (OAS) effects on mosaic-8b efficacy, we evaluated effects of prior COVID-19 vaccinations in non-human primates and mice on sarbecovirus response breadths elicited by mosaic-8b, admix-8b (8 homotypics), and homotypic SARS-CoV-2, finding greatest cross-reactivity for mosaic-8b. As demonstrated by molecular fate-mapping in which antibodies derived from specific cohorts of B cells are differentially detected, B cells primed by WA1 spike mRNA-LNP dominated antibody responses after RBD-nanoparticle boosting. While mosaic-8b- and homotypic-nanoparticles boosted cross-reactive antibodies, de novo antibodies were predominantly induced with mosaic-8b boosting, and these were specific for variant RBDs with increased identity to RBDs on mosaic-8b. These results inform OAS mechanisms and support using mosaic-8b to protect COVID-19 vaccinated/infected humans against as-yet-unknown SARS-CoV-2 variants and animal sarbecoviruses with human spillover potential.

9.
bioRxiv ; 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38260488

ABSTRACT

Primary human hepatocyte (PHH) transplantation is a promising alternative to liver transplantation, whereby liver function could be restored by partial repopulation of the diseased organ with healthy cells. However, currently PHH engraftment efficiency is low and benefits are not maintained long-term. Here we refine two mouse models of human chronic and acute liver diseases to recapitulate compromised hepatocyte proliferation observed in nearly all human liver diseases by overexpression of p21 in hepatocytes. In these clinically relevant contexts, we demonstrate that transient, yet robust expression of human hepatocyte growth factor and epidermal growth factor in the liver via nucleoside-modified mRNA in lipid nanoparticles, whose safety was validated with mRNA-based COVID-19 vaccines, drastically improves PHH engraftment, reduces disease burden, and improves overall liver function. This novel strategy may overcome the critical barriers to clinical translation of cell therapies with primary or stem cell-derived hepatocytes for the treatment of liver diseases.

10.
Sci Rep ; 14(1): 496, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38177212

ABSTRACT

19ISP is a nucleoside-modified mRNA-lipid nanoparticle vaccine that targets 19 Ixodes scapularis proteins. We demonstrate that adult I. scapularis have impaired fecundity when allowed to engorge on 19ISP-immunized rabbits. 19ISP, therefore, has the potential to interrupt the tick reproductive cycle, without triggering some of the other effects associated with acquired tick resistance. This may lead to the development of new strategies to reduce I. scapularis populations in endemic areas.


Subject(s)
Ixodes , Animals , Rabbits , Ixodes/genetics , RNA, Messenger/genetics , Vaccination , Fertility
11.
FEBS Open Bio ; 14(3): 380-389, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38129177

ABSTRACT

The receptor-binding domain (RBD) of the spike glycoprotein of SARS-CoV-2 virus mediates the interaction with the host cell and is required for virus internalization. It is, therefore, the primary target of neutralizing antibodies. The receptor-binding domain soon became the major target for COVID-19 research and the development of diagnostic tools and new-generation vaccines. Here, we provide a detailed protocol for high-yield expression and one-step affinity purification of recombinant RBD from transiently transfected Expi293F cells. Expi293F mammalian cells can be grown to extremely high densities in a specially formulated serum-free medium in suspension cultures, which makes them an excellent tool for secreted protein production. The highly purified RBD is glycosylated, structurally intact, and forms homomeric complexes. With this quick and easy method, we are able to produce large quantities of RBD (80 mg·L-1 culture) that we have successfully used in immunological assays to examine antibody titers and seroconversion after mRNA-based vaccination of mice.


Subject(s)
COVID-19 , Humans , Animals , Mice , Spike Glycoprotein, Coronavirus/chemistry , SARS-CoV-2/metabolism , Antibodies, Viral , Mammals
12.
NPJ Vaccines ; 8(1): 187, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38092803

ABSTRACT

Plasmodium vivax (P. vivax) is the major malaria parasite outside of Africa and no vaccine is available against it. A vaccine that interrupts parasite transmission (transmission-blocking vaccine, TBV) is considered highly desirable to reduce the spread of P. vivax and to accelerate its elimination. However, the development of a TBV against this pathogen has been hampered by the inability to culture the parasite as well as the low immunogenicity of the vaccines developed to date. Pvs25 is the most advanced TBV antigen candidate for P. vivax. However, in previous phase I clinical trials, TBV vaccines based on Pvs25 yielded low antibody responses or had unacceptable safety profiles. As the nucleoside-modified mRNA-lipid nanoparticle (mRNA-LNP) vaccine platform proved to be safe and effective in humans, we generated and tested mRNA-LNP vaccines encoding several versions of Pvs25 in mice. We found that in a prime-boost vaccination schedule, all Pvs25 mRNA-LNP vaccines elicited robust antigen-specific antibody responses. Furthermore, when compared with a Pvs25 recombinant protein vaccine formulated with Montanide ISA-51 adjuvant, the full-length Pvs25 mRNA-LNP vaccine induced a stronger and longer-lasting functional immunity. Seven months after the second vaccination, vaccine-induced antibodies retained the ability to fully block P. vivax transmission in direct membrane feeding assays, whereas the blocking activity induced by the protein/ISA-51 vaccine dropped significantly. Taken together, we report on mRNA vaccines targeting P. vivax and demonstrate that Pvs25 mRNA-LNP outperformed an adjuvanted Pvs25 protein vaccine suggesting that it is a promising candidate for further testing in non-human primates.

13.
Cell Stem Cell ; 30(12): 1640-1657.e8, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38029740

ABSTRACT

The liver is known for its remarkable regenerative ability through proliferation of hepatocytes. Yet, during chronic injury or severe hepatocyte death, proliferation of hepatocytes is exhausted. To overcome this hurdle, we propose vascular-endothelial-growth-factor A (VEGFA) as a therapeutic means to accelerate biliary epithelial-cell (BEC)-to-hepatocyte conversion. Investigation in zebrafish establishes that blocking VEGF receptors abrogates BEC-driven liver repair, while VEGFA overexpression promotes it. Delivery of VEGFA via nonintegrative and safe nucleoside-modified mRNA encapsulated into lipid nanoparticles (mRNA-LNPs) in acutely or chronically injured mouse livers induces robust BEC-to-hepatocyte conversion and elimination of steatosis and fibrosis. In human and murine diseased livers, we further identified VEGFA-receptor KDR-expressing BECs associated with KDR-expressing cell-derived hepatocytes. This work defines KDR-expressing cells, most likely being BECs, as facultative progenitors. This study reveals unexpected therapeutic benefits of VEGFA delivered via nucleoside-modified mRNA-LNP, whose safety is widely validated with COVID-19 vaccines, for harnessing BEC-driven repair to potentially treat liver diseases.


Subject(s)
Liver Diseases , Zebrafish , Animals , Mice , Humans , RNA, Messenger/genetics , COVID-19 Vaccines , Nucleosides , Hepatocytes , Liver , Epithelial Cells , Liver Diseases/pathology , Fibrosis , Liver Regeneration , Vascular Endothelial Growth Factor A/genetics
14.
Nat Immunol ; 24(11): 1933-1946, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37828378

ABSTRACT

The extent to which unconventional forms of antigen presentation drive T cell immunity is unknown. By convention, CD8 T cells recognize viral peptides, or epitopes, in association with classical major histocompatibility complex (MHC) class I, or MHC-Ia, but immune surveillance can, in some cases, be directed against peptides presented by nonclassical MHC-Ib, in particular the MHC-E proteins (Qa-1 in mice and HLA-E in humans); however, the overall importance of nonclassical responses in antiviral immunity remains unclear. Similarly uncertain is the importance of 'cryptic' viral epitopes, defined as those undetectable by conventional mapping techniques. Here we used an immunopeptidomic approach to search for unconventional epitopes that drive T cell responses in mice infected with influenza virus A/Puerto Rico/8/1934. We identified a nine amino acid epitope, termed M-SL9, that drives a co-immunodominant, cytolytic CD8 T cell response that is unconventional in two major ways: first, it is presented by Qa-1, and second, it has a cryptic origin, mapping to an unannotated alternative reading frame product of the influenza matrix gene segment. Presentation and immunogenicity of M-SL9 are dependent on the second AUG codon of the positive sense matrix RNA segment, suggesting translation initiation by leaky ribosomal scanning. During influenza virus A/Puerto Rico/8/1934 infection, M-SL9-specific T cells exhibit a low level of egress from the lungs and strong differentiation into tissue-resident memory cells. Importantly, we show that M-SL9/Qa-1-specific T cells can be strongly induced by messenger RNA vaccination and that they can mediate antigen-specific cytolysis in vivo. Our results demonstrate that noncanonical translation products can account for an important fraction of the T cell repertoire and add to a growing body of evidence that MHC-E-restricted T cells could have substantial therapeutic value.


Subject(s)
Influenza, Human , Humans , Mice , Animals , Epitopes , T-Lymphocytes, Cytotoxic , CD8-Positive T-Lymphocytes , Peptides , Epitopes, T-Lymphocyte
15.
NPJ Vaccines ; 8(1): 156, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37821446

ABSTRACT

During the COVID-19 pandemic, Pfizer-BioNTech and Moderna successfully developed nucleoside-modified mRNA lipid nanoparticle (LNP) vaccines. SARS-CoV-2 spike protein expressed by those vaccines are identical in amino acid sequence, but several key components are distinct. Here, we compared the effect of ionizable lipids, untranslated regions (UTRs), and nucleotide composition of the two vaccines, focusing on mRNA delivery, antibody generation, and long-term stability. We found that the ionizable lipid, SM-102, in Moderna's vaccine performs better than ALC-0315 in Pfizer-BioNTech's vaccine for intramuscular delivery of mRNA and antibody production in mice and long-term stability at 4 °C. Moreover, Pfizer-BioNTech's 5' UTR and Moderna's 3' UTR outperform their counterparts in their contribution to transgene expression in mice. We further found that varying N1-methylpseudouridine content at the wobble position of mRNA has little effect on vaccine efficacy. These findings may contribute to the further improvement of nucleoside-modified mRNA-LNP vaccines and therapeutics.

16.
Mol Ther ; 31(9): 2702-2714, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37533256

ABSTRACT

Lyme disease is the most common vector-borne infectious disease in the United States, in part because a vaccine against it is not currently available for humans. We propose utilizing the lipid nanoparticle-encapsulated nucleoside-modified mRNA (mRNA-LNP) platform to generate a Lyme disease vaccine like the successful clinical vaccines against SARS-CoV-2. Of the antigens expressed by Borrelia burgdorferi, the causative agent of Lyme disease, outer surface protein A (OspA) is the most promising candidate for vaccine development. We have designed and synthesized an OspA-encoding mRNA-LNP vaccine and compared its immunogenicity and protective efficacy to an alum-adjuvanted OspA protein subunit vaccine. OspA mRNA-LNP induced superior humoral and cell-mediated immune responses in mice after a single immunization. These potent immune responses resulted in protection against bacterial infection. Our study demonstrates that highly efficient mRNA vaccines can be developed against bacterial targets.


Subject(s)
COVID-19 , Lyme Disease , Humans , Animals , Mice , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2 , Lyme Disease/prevention & control , Antigens, Surface/genetics , Bacterial Outer Membrane Proteins/genetics
17.
Vaccine ; 41(34): 4996-5002, 2023 07 31.
Article in English | MEDLINE | ID: mdl-37407406

ABSTRACT

Acquired resistance to ticks can develop when animals are repeatedly exposed to ticks. Recently, acquired resistance to Ixodes scapularis was induced in guinea pigs immunized with an mRNA-lipid nanoparticle vaccine (19ISP) encoding 19 I. scapularis proteins. Here, we evaluated specific mRNAs present in 19ISP to identify critical components associated with resistance to ticks. A lipid nanoparticle containing 12 mRNAs which included all the targets within 19ISP that elicited strong humoral responses in guinea pigs, was sufficient to induce robust resistance to ticks. Lipid nanoparticles containing fewer mRNAs or a single mRNA were not able to generate strong resistance to ticks. All lipid nanoparticles containing salp14 mRNA, however, were associated with increased redness at the tick bite site - which is the first manifestation of acquired resistance to ticks. This study demonstrates that more than one I. scapularis target within 19ISP is required for resistance to ticks, and that additional targets may also play a role in this process.


Subject(s)
Ixodes , Lyme Disease , Animals , Guinea Pigs , RNA, Messenger , Ixodes/genetics
18.
Antibodies (Basel) ; 12(3)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37489368

ABSTRACT

Harnessing the immune system to combat disease has revolutionized medical treatment. Monoclonal antibodies (mAbs), in particular, have emerged as important immunotherapeutic agents with clinical relevance in treating a wide range of diseases, including allergies, autoimmune diseases, neurodegenerative disorders, cancer, and infectious diseases. These mAbs are developed from naturally occurring antibodies and target specific epitopes of single molecules, minimizing off-target effects. Antibodies can also be designed to target particular pathogens or modulate immune function by activating or suppressing certain pathways. Despite their benefit for patients, the production and administration of monoclonal antibody therapeutics are laborious, costly, and time-consuming. Administration often requires inpatient stays and repeated dosing to maintain therapeutic levels, limiting their use in underserved populations and developing countries. Researchers are developing alternate methods to deliver monoclonal antibodies, including synthetic nucleic acid-based delivery, to overcome these limitations. These methods allow for in vivo production of monoclonal antibodies, which would significantly reduce costs and simplify administration logistics. This review explores new methods for monoclonal antibody delivery, including synthetic nucleic acids, and their potential to increase the accessibility and utility of life-saving treatments for several diseases.

19.
bioRxiv ; 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37131727

ABSTRACT

Background and Aims: Acetaminophen (APAP) overdose is the leading cause of acute liver failure, with one available treatment, N-acetyl cysteine (NAC). Yet, NAC effectiveness diminishes about ten hours after APAP overdose, urging for therapeutic alternatives. This study addresses this need by deciphering a mechanism of sexual dimorphism in APAP-induced liver injury, and leveraging it to accelerate liver recovery via growth hormone (GH) treatment. GH secretory patterns, pulsatile in males and near-continuous in females, determine the sex bias in many liver metabolic functions. Here, we aim to establish GH as a novel therapy to treat APAP hepatotoxicity. Approach and Results: Our results demonstrate sex-dependent APAP toxicity, with females showing reduced liver cell death and faster recovery than males. Single-cell RNA sequencing analyses reveal that female hepatocytes have significantly greater levels of GH receptor expression and GH pathway activation compared to males. In harnessing this female-specific advantage, we demonstrate that a single injection of recombinant human GH protein accelerates liver recovery, promotes survival in males following sub-lethal dose of APAP, and is superior to standard-of-care NAC. Alternatively, slow-release delivery of human GH via the safe nonintegrative lipid nanoparticle-encapsulated nucleoside-modified mRNA (mRNA-LNP), a technology validated by widely used COVID-19 vaccines, rescues males from APAP-induced death that otherwise occurred in control mRNA-LNP-treated mice. Conclusions: Our study demonstrates a sexually dimorphic liver repair advantage in females following APAP overdose, leveraged by establishing GH as an alternative treatment, delivered either as recombinant protein or mRNA-LNP, to potentially prevent liver failure and liver transplant in APAP-overdosed patients.

20.
bioRxiv ; 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37131823

ABSTRACT

The liver is known for its remarkable regenerative ability through proliferation of hepatocytes. Yet, during chronic injury or severe hepatocyte death, proliferation of hepatocytes is exhausted. To overcome this hurdle, we propose vascular-endothelial-growth-factor A (VEGFA) as a therapeutic means to accelerate biliary epithelial cell (BEC)-to-hepatocyte conversion. Investigation in zebrafish establishes that blocking VEGF receptors abrogates BEC-driven liver repair, while VEGFA overexpression promotes it. Delivery of VEGFA via non-integrative and safe nucleoside-modified mRNA encapsulated into lipid-nanoparticles (mRNA-LNP) in acutely or chronically injured mouse livers induces robust BEC-to-hepatocyte conversion and reversion of steatosis and fibrosis. In human and murine diseased livers, we further identified VEGFA-receptor KDR-expressing BECs associated with KDR-expressing cell-derived hepatocytes. This defines KDR-expressing cells, most likely being BECs, as facultative progenitors. This study reveals novel therapeutic benefits of VEGFA delivered via nucleoside-modified mRNA-LNP, whose safety is widely validated with COVID-19 vaccines, for harnessing BEC-driven repair to potentially treat liver diseases. Highlights: Complementary mouse and zebrafish models of liver injury demonstrate the therapeutic impact of VEGFA-KDR axis activation to harness BEC-driven liver regeneration.VEGFA mRNA LNPs restore two key features of the chronic liver disease in humans such as steatosis and fibrosis.Identification in human cirrhotic ESLD livers of KDR-expressing BECs adjacent to clusters of KDR+ hepatocytes suggesting their BEC origin.KDR-expressing BECs may represent facultative adult progenitor cells, a unique BEC population that has yet been uncovered.

SELECTION OF CITATIONS
SEARCH DETAIL
...