Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 171: 289-307, 2023 11.
Article in English | MEDLINE | ID: mdl-37683964

ABSTRACT

Corneal scarring and opacification are a significant cause of blindness affecting millions worldwide. The current standard of care for corneal blindness is corneal transplantation, which suffers from several drawbacks. One alternative approach that has shown promise is the use of xenogeneic corneal extracellular matrix (ECM), but its clinical applicability is challenging due to safety concerns. This study reports the innovative use of human cornea-derived ECM to prevent post-traumatic corneal scarring. About 30 - 40% of corneas donated to the eye banks do not meet the standards defined for clinical use and are generally discarded, although they are completely screened for their safety. In this study, human cornea-derived decellularized ECM hydrogel was prepared from the non-transplantation grade human cadaveric corneas obtained from an accredited eye-bank. The prepared hydrogel was screened for its efficacy against corneal opacification following an injury in an animal model. Our in vivo study revealed that, the control collagen-treated group developed corneal opacification, while the prophylactic application of human cornea-derived hydrogel effectively prevented corneal scarring and opacification. The human hydrogel-treated corneas were indistinguishable from healthy corneas and comparable to those treated with the xenogeneic bovine corneal hydrogel. We also demonstrated that the application of the hydrogel retained the biological milieu including cell behavior, protein components, optical properties, curvature, and nerve regeneration by remodeling the corneal wound after injury. The hydrogel application is also sutureless, resulting in faster corneal healing. We envision that this human cornea-derived ECM-based hydrogel has potential clinical application in preventing scarring from corneal wounding. STATEMENT OF SIGNIFICANCE: There are significant challenges surrounding corneal regeneration after injury due to extensive scarring. Although there is substantial research on corneal regeneration, much of it uses synthetic materials with chemical cross-linking methods or xenogeneic tissue-based material devices which have to undergo exhaustive safety analysis before clinical trials. Herein, we demonstrate the potential application of a human corneal extracellular matrix hydrogel without any additional materials for scarless corneal tissue regeneration, and a method to reduce the wasting of donated allogenic corneal tissue from eye banks. We found no difference in efficacy between the usage of human tissues compared to xenogeneic sources. This may help ease clinical translation and can be used topically without sutures as an outpatient procedure.


Subject(s)
Cicatrix , Corneal Injuries , Humans , Animals , Cattle , Cicatrix/prevention & control , Cicatrix/drug therapy , Hydrogels/pharmacology , Hydrogels/chemistry , Cornea/surgery , Extracellular Matrix/chemistry , Blindness
2.
Cureus ; 14(9): e29567, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36312686

ABSTRACT

Gastrointestinal (GI) endoscopy has transformed over the years in scope, safety, accuracy, acceptability, and cost effectiveness of the clinical practice. There has been a reduction in the superiority of the endoscopic devices as innovations have taken place and increased the diagnostic values with certain limitations. There are particular difficulties in striking a balance between the development of new technology and the device's acceptance. The wide use of endoscopy for investigating GI lesions and diagnosis has led to an increase in more advanced methods and their broad application. It can simultaneously diagnose pre-malignant and malignant lesions, and newer interventions have made the biopsy specimen uptake possible. In this review article, we focus on the more recent roles, indications, applications, and usage of the innovative methods of endoscopy.

3.
BMC Complement Med Ther ; 22(1): 114, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35459166

ABSTRACT

BACKGROUND: Viral infections have a history of abrupt and severe eruptions through the years in the form of pandemics. And yet, definitive therapies or preventive measures are not present. Herbal medicines have been a source of various antiviral compounds such as Oseltamivir, extracted using shikimic acid from star anise (Illicium verum) and Acyclovir from Carissa edulis are FDA (Food and Drug Administration) approved antiviral drugs. In this study, we dissect the anti-coronavirus infection activity of Cissampelos pareira L (Cipa) extract using an integrative approach. METHODS: We analysed the signature similarities between predicted antiviral agents and Cipa using the connectivity map ( https://clue.io/ ). Next, we tested the anti-SARS-COV-2 activity of Cipa in vitro. Molecular docking analyses of constituents of with key targets of SARS-CoV2 protein viz. spike protein, RNA­dependent RNA­polymerase (RdRp) and 3C­like proteinase. was also performed. A three-way comparative analysis of Cipa transcriptome, COVID-19 BALF transcriptome and CMAP signatures of small compounds was also performed. RESULTS: Several predicted antivirals showed a high positive connectivity score with Cipa such as apcidin, emetine, homoharringtonine etc. We also observed 98% inhibition of SARS-COV-2 replication in infected Vero cell cultures with the whole extract. Some of its prominent pure constituents e.g. pareirarine, cissamine, magnoflorine exhibited 40-80% inhibition. Comparison of genes between BALF and Cipa showed an enrichment of biological processes like transcription regulation and response to lipids, to be downregulated in Cipa while being upregulated in COVID-19. CMAP also showed that Triciribine, torin-1 and VU-0365114-2 had positive connectivity with BALF 1 and 2, and negative connectivity with Cipa. Amongst all the tested compounds, Magnoflorine and Salutaridine exhibited the most potent and consistent strong in silico binding profiles with SARS-CoV2 therapeutic targets.


Subject(s)
COVID-19 Drug Treatment , Cissampelos , Antiviral Agents/pharmacology , Cissampelos/chemistry , Molecular Docking Simulation , Plant Extracts/chemistry , Plant Extracts/pharmacology , RNA, Viral , SARS-CoV-2
4.
Sci Rep ; 12(1): 3446, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35236909

ABSTRACT

The COVID19 pandemic has led to multipronged approaches for treatment of the disease. Since de novo discovery of drugs is time consuming, repurposing of molecules is now considered as one of the alternative strategies to treat COVID19. Antibacterial peptides are being recognized as attractive candidates for repurposing to treat viral infections. In this study, we describe the anti-SARS-CoV-2 activity of the well-studied antibacterial peptides gramicidin S and melittin obtained from Bacillus brevis and bee venom respectively. The EC50 values for gramicidin S and melittin were 1.571 µg and 0.656 µg respectively based on in vitro antiviral assay. Significant decrease in the viral load as compared to the untreated group with no/very less cytotoxicity was observed. Both the peptides treated to the SARS-CoV-2 infected Vero cells showed viral clearance from 12 h onwards with a maximal viral clearance after 24 h post infection. Proteomics analysis indicated that more than 250 proteins were differentially regulated in the gramicidin S and melittin treated SARS-CoV-2 infected Vero cells against control SARS-CoV-2 infected Vero cells after 24 and 48 h post infection. The identified proteins were found to be associated in the metabolic and mRNA processing of the Vero cells post-treatment and infection. Both these peptides could be attractive candidates for repurposing to treat SARS-CoV-2 infection.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Gramicidin/therapeutic use , Melitten/therapeutic use , SARS-CoV-2/isolation & purification , Animals , COVID-19/metabolism , COVID-19/virology , Chlorocebus aethiops , Humans , Proteomics , Vero Cells
5.
Colloid Interface Sci Commun ; 45: 100542, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34729365

ABSTRACT

Surfaces containing antiviral nanoparticles could play a crucial role in minimizing the virus spread further, specifically for COVID-19. Here in, we have developed a facile and durable antiviral and antimicrobial fabric containing photodeposited silver nanoparticles. Scanning and transmission electron microscopy, UV-VIS spectroscopy, and XPS are used to characterize the silver nanoparticles deposited cloth. It is evident that Ag0/Ag+ redox couple is formed during fabrication, which acts as an active agent. Antiviral testing results show that silver nanoparticles deposited fabric exhibits 97% viral reduction specific to SARS-CoV-2. Besides its excellent antiviral property, the modified fabric also offers antimicrobial efficiency when tested with the airborne human pathogenic bacteria Escherichia coli and fungi Aspergillus Niger. The direct photodeposition provides Ag-O-C interaction leads to firmly grafted nanoparticles on fabric allow the modified fabric to sustain the laundry durability test. The straightforward strategy to prepare an efficient antimicrobial cloth can attract rapid large-scale industrial production.

6.
Respir Res ; 22(1): 99, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33823870

ABSTRACT

BACKGROUND: COVID-19 pneumonia has been associated with severe acute hypoxia, sepsis-like states, thrombosis and chronic sequelae including persisting hypoxia and fibrosis. The molecular hypoxia response pathway has been associated with such pathologies and our recent observations on anti-hypoxic and anti-inflammatory effects of whole aqueous extract of Adhatoda Vasica (AV) prompted us to explore its effects on relevant preclinical mouse models. METHODS: In this study, we tested the effect of whole aqueous extract of AV, in murine models of bleomycin induced pulmonary fibrosis, Cecum Ligation and Puncture (CLP) induced sepsis, and siRNA induced hypoxia-thrombosis phenotype. The effect on lung of AV treated naïve mice was also studied at transcriptome level. We also determined if the extract may have any effect on SARS-CoV2 replication. RESULTS: Oral administration AV extract attenuates increased airway inflammation, levels of transforming growth factor-ß1 (TGF-ß1), IL-6, HIF-1α and improves the overall survival rates of mice in the models of pulmonary fibrosis and sepsis and rescues the siRNA induced inflammation and associated blood coagulation phenotypes in mice. We observed downregulation of hypoxia, inflammation, TGF-ß1, and angiogenesis genes and upregulation of adaptive immunity-related genes in the lung transcriptome. AV treatment also reduced the viral load in Vero cells infected with SARS-CoV2. CONCLUSION: Our results provide a scientific rationale for this ayurvedic herbal medicine in ameliorating the hypoxia-hyperinflammation features and highlights the repurposing potential of AV in COVID-19-like conditions.


Subject(s)
Anti-Inflammatory Agents/pharmacology , COVID-19 Drug Treatment , Drug Repositioning , Hypoxia/drug therapy , Justicia , Lung/drug effects , Plant Extracts/pharmacology , Pneumonia/prevention & control , Pulmonary Fibrosis/drug therapy , Sepsis/drug therapy , Animals , Anti-Inflammatory Agents/isolation & purification , Bleomycin , COVID-19/metabolism , COVID-19/virology , Cecum/microbiology , Cecum/surgery , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Hypoxia/genetics , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Inflammation Mediators/metabolism , Justicia/chemistry , Ligation , Lung/metabolism , Lung/microbiology , Lung/pathology , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Plant Extracts/isolation & purification , Pneumonia/genetics , Pneumonia/metabolism , Pneumonia/microbiology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Sepsis/genetics , Sepsis/metabolism , Sepsis/microbiology , Transcriptome
7.
ACS Appl Bio Mater ; 4(1): 533-544, 2021 01 18.
Article in English | MEDLINE | ID: mdl-35014304

ABSTRACT

Corneal scarring is one of the major causes of blindness, affecting millions worldwide. Despite recent advancements in surgical strategies, there is an unmet need for a clinically feasible material and methods to prevent scarring following corneal injury. In this study, we report the potential utility of a hydrogel derived from cadaveric animal corneas, using a decellularized corneal matrix hydrogel (abbreviated as dCMH), which is prepared by a simple method. This hydrogel is easily injectable, biocompatible, and has the ability to maintain good shape-retention properties at 37 °C, which make it suitable for in vivo applications. Furthermore, our gene expression studies and immunofluorescence studies indicate that dCMH maintains the morphology and function of keratocytes in vitro and prevents their transdifferentiation to myofibroblasts. From the above results, it is evident that dCMH maintains the keratocytes with the ability to regenerate the corneal defect without scar. We thus suggest a simple yet effective approach for corneal tissue decellularization and that dCMH can be a promising material for prophylaxis against blinding scar formation in an injured cornea.


Subject(s)
Biocompatible Materials/chemistry , Extracellular Matrix/chemistry , Hydrogels/chemistry , Animals , Biocompatible Materials/pharmacology , Cell Line , Cell Movement/drug effects , Cell Transdifferentiation/drug effects , Cornea/cytology , Cornea/metabolism , Humans , Myofibroblasts/cytology , Myofibroblasts/metabolism , Porosity , Rheology
8.
Stem Cell Res ; 48: 101963, 2020 10.
Article in English | MEDLINE | ID: mdl-32916634

ABSTRACT

An integration free iPSC line was generated from fibroblast obtained from the skin of an aborted fetus in feeder free conditions using episomal based vectors expressing the pluripotency factors. The cell line generated was characterized and tested for pluripotency both in vitro and in vivo by teratoma formation and differentiation into defined lineages and brain organoids. Cell line reported here is shown to be mycoplasma free.


Subject(s)
Aborted Fetus , Induced Pluripotent Stem Cells , Cell Differentiation , Cell Line , Fibroblasts , Humans
9.
Am J Stem Cells ; 9(5): 68-77, 2020.
Article in English | MEDLINE | ID: mdl-33489464

ABSTRACT

INTRODUCTION: HspB5 (αB-crystallin) is known to be involved in a variety of cellular functions, including, protection of cells from oxidative damage and inhibiting apoptosis. Neural stem/progenitor cells (NSPCs) have significant therapeutic value, especially in the NSC/NPC transplantation therapy. However, the viability of the transplanted NSPCs remains low because of various factors, including oxidative stress. OBJECTIVE: The current investigation explored the possible role of HspB5 in the protection of mouse NSPCs (mNSPCs) against paraquat-induced toxicity. METHODS: The recombinant human HspB5 was expressed in E.coli and was purified using gel filtration and Ion-exchange chromatography. The biophysical characterization of HspB5 was carried out using DLS, CD, and Analytical Ultracentrifugation (SV); the chaperone activity of HspB5 was determined by alcohol dehydrogenase aggregation assay. We have subjected the mNSPCs to paraquat-induced oxidative stress and monitored the protective ability of HspB5 by MTT assay and Hoechst-PI staining. Furthermore, increase in the expression of the anti-apoptotic protein, procaspase-3 was monitored using western blotting. RESULTS: The recombinant HspB5 was purified to its homogeneity and was characterized using various biophysical techniques. The externally added FITC-labeled HspB5 was found to be localized within the cytoplasm of mNSPCs. Our Immunocytochemistry results showed that the externally added FITC-labeled HspB5 not only entered the cells but also conferred cytoprotection against paraquat-induced toxicity. The protective events were monitored by a decrease in the PI-positive cells and an increase in the procaspase-3 expression through Immunocytochemistry and Western blotting respectively. CONCLUSION: Our results clearly demonstrate that exogenously added recombinant human HspB5 enters the mNSPCs and confers protection against paraquat toxicity.

SELECTION OF CITATIONS
SEARCH DETAIL
...