Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 508(7495): 199-206, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24695229

ABSTRACT

The anatomical and functional architecture of the human brain is mainly determined by prenatal transcriptional processes. We describe an anatomically comprehensive atlas of the mid-gestational human brain, including de novo reference atlases, in situ hybridization, ultra-high-resolution magnetic resonance imaging (MRI) and microarray analysis on highly discrete laser-microdissected brain regions. In developing cerebral cortex, transcriptional differences are found between different proliferative and post-mitotic layers, wherein laminar signatures reflect cellular composition and developmental processes. Cytoarchitectural differences between human and mouse have molecular correlates, including species differences in gene expression in subplate, although surprisingly we find minimal differences between the inner and outer subventricular zones even though the outer zone is expanded in humans. Both germinal and post-mitotic cortical layers exhibit fronto-temporal gradients, with particular enrichment in the frontal lobe. Finally, many neurodevelopmental disorder and human-evolution-related genes show patterned expression, potentially underlying unique features of human cortical formation. These data provide a rich, freely-accessible resource for understanding human brain development.


Subject(s)
Brain/metabolism , Fetus/metabolism , Gene Expression Regulation, Developmental/genetics , Transcriptome , Anatomy, Artistic , Animals , Atlases as Topic , Brain/embryology , Conserved Sequence/genetics , Fetus/cytology , Fetus/embryology , Gene Regulatory Networks/genetics , Humans , Mice , Neocortex/embryology , Neocortex/metabolism , Species Specificity
2.
Antimicrob Agents Chemother ; 49(7): 2921-7, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15980369

ABSTRACT

Greater than 90% of lung infections in cystic fibrosis (CF) patients are caused by Pseudomonas aeruginosa, and the majority of these patients subsequently die from lung damage. Current therapies are either targeted at reducing obstruction, reducing inflammation, or reducing infection. To identify potential therapeutic agents for the CF lung, 150 antimicrobial peptides consisting of three distinct structural classes were screened against mucoid and multidrug-resistant clinical isolates of P. aeruginosa, Stenotrophomonas maltophilia, Achromobacter xylosoxidans, and Staphylococcus aureus. Five peptides that retained potent antimicrobial activities in physiological salt and divalent cation environment were further characterized in vivo using a rat chronic lung infection model. All animals were inoculated intratracheally with 10(4) P. aeruginosa mucoid PAO1 cells in agar beads. Three days following inoculation treatment was initiated. Animals were treated daily for 3 days with 100 microl of peptide solution (1 mg/ml) in 10 mM sodium citrate, which was deposited via either intratracheal instillation or aerosolization. Control animals received daily exposure to vehicle alone. At the end of the treatment the lungs of the animals were removed for quantitative culture. Four peptides, HBCM2, HBCM3, HBCPalpha-2, and HB71, demonstrated significant reduction in Pseudomonas bioburden in the lung of rats. Further in vivo studies provided direct evidence that anti-inflammatory activity was associated with three of these peptides. Therefore, small bioactive peptides have the potential to attack two of the components responsible for the progression of lung damage in the CF disease: infection and inflammation.


Subject(s)
Anti-Infective Agents/therapeutic use , Antimicrobial Cationic Peptides/therapeutic use , Cystic Fibrosis/drug therapy , Cystic Fibrosis/microbiology , Lung Diseases/drug therapy , Lung Diseases/microbiology , Amino Acid Sequence , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Disease Models, Animal , Ear Diseases/drug therapy , Edema/drug therapy , Gram-Negative Bacteria/drug effects , Humans , Mice , Microbial Sensitivity Tests , Molecular Sequence Data , Pseudomonas aeruginosa/drug effects , Rats , Staphylococcus aureus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...