Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters











Publication year range
1.
Environ Sci Pollut Res Int ; 30(59): 123181-123192, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37979103

ABSTRACT

In vertebrates, insulin-like growth like factors (IGFs) play an important role in growth and other physiological processes. The GH-IGF axis is considered a valuable tool to monitor fish growth performance. Herein, we report the molecular characterization of igf-1, igf-2, and ß-actin transcripts and relative expression of igf-1 and igf-2 in the liver and muscle tissue of cage-reared butter catfish, Ompok bimaculatus, in response to different stocking densities (T1, 15 fingerlings m-3; T2, 25 fingerlings m-3; and T3, 35 fingerlings m-3) over 180 days of culture duration. The length of the partial amplified transcript sequence of Obigf-1, Obigf-2, and Obß-actin was 325, 438, and 924 bp, respectively. Phylogenetically, Obigf-1 and Obigf-2 were closely clustered with catfishes, viz., Clarias magur, Bagarius yarrelli, and Silurus asotus. The expression of igf-1 was significantly downregulated in the liver at higher densities after 120 days as biomass in the cages increased, while igf-2 expression did not change with the stocking densities over the culture period. Cortisol concentration was significantly elevated in T3 groups post 150 days of the culture period and correlated negatively with the expression of igf-1 (p < 0.05) and igf-2 (p > 0.05). Environmental parameters, pH, TDS, hardness, conductivity, and alkalinity showed a significant positive correlation with hepatic IGF expression. Our study indicates that the liver-derived igf-1 plays a more important role in the regulation of growth in response to culture density in the species studied, and thus, igf-1 can be used effectively as a biomarker for growth. Furthermore, this study will help in planning a proper harvest schedule and optimize the culture practices of O. bimaculatus in an open water cage system.


Subject(s)
Catfishes , Insulin-Like Growth Factor II , Insulin-Like Growth Factor I , Animals , Catfishes/genetics , Ecosystem , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor II/genetics , Insulin-Like Peptides
2.
Int Microbiol ; 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37702858

ABSTRACT

Vibrio parahaemolyticus causes seafood-borne gastroenteritis infection in human which can even lead to death. The pathogenic strain of V. parahaemolyticus secretes different types of virulence factors that are directly injected into the host cell by a different type of secretion system which helps bacteria to establish its own ecological niche within the organism. Therefore, the aim of this study was to isolate the extracellular secreted proteins from the trh positive strain of V. parahaemolyticus and identify them using two-dimensional gel electrophoresis and MALDI-TOFMS/MS. Seventeen different cellular proteins viz, Carbamoyl-phosphate synthase, 5-methyltetrahydropteroyltriglutamate, tRNA-dihydrouridine synthase, Glycerol-3-phosphate dehydrogenase, Orotidine 5'-phosphate decarboxylase, Molybdenum import ATP-binding protein, DnaJ, DNA polymerase IV, Ribosomal RNA small subunit methyltransferase G, ATP synthase subunit delta and gamma, Ribosome-recycling factor, 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase, tRNA pseudouridine synthase B, Ditrans, polycis-undecaprenyl-diphosphate synthase, Oxygen-dependent coproporphyrinogen-III oxidase, and Peptide deformylase 2 were identified which are mainly involved in different metabolic and biosynthetic pathways. Furthermore, the molecular function of the identified proteins were associated with catalytic activity, ligase activity, transporter, metal binding, and ATP synthase when they are intercellular. However, to understand the importance of these secreted proteins in the infection and survival of bacteria inside the host cell, pathogen-host protein-protein interactions (PPIs) were carried out which identified the association of eight secreted proteins with 41 human proteins involved in different cellular pathways, including ubiquitination degradation, adhesion, inflammation, immunity, and programmed cell death. The present study provides unreported strategies on host-cell environment's survival and adaptation mechanisms for the successful establishment of infections and intracellular propagation.

3.
Int J Mol Sci ; 24(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36674953

ABSTRACT

Enterocytozoon hepatopenaei (EHP) causes slow growth syndrome in shrimp, resulting in huge economic losses for the global shrimp industry. Despite worldwide reports, there are no effective therapeutics for controlling EHP infections. In this study, five potential druggable targets of EHP, namely, aquaporin (AQP), cytidine triphosphate (CTP) synthase, thymidine kinase (TK), methionine aminopeptidase2 (MetAP2), and dihydrofolate reductase (DHFR), were identified via functional classification of the whole EHP proteome. The three-dimensional structures of the proteins were constructed using the artificial-intelligence-based program AlphaFold 2. Following the prediction of druggable sites, the ZINC15 and ChEMBL databases were screened against targets using docking-based virtual screening. Molecules with affinity scores ≥ 7.5 and numbers of interactions ≥ 9 were initially selected and subsequently enriched based on their ADMET properties and electrostatic complementarities. Five compounds were finally selected against each target based on their complex stabilities and binding energies. The compounds CHEMBL3703838, CHEMBL2132563, and CHEMBL133039 were selected against AQP; CHEMBL1091856, CHEMBL1162979, and CHEMBL525202 against CTP synthase; CHEMBL4078273, CHEMBL1683320, and CHEMBL3674540 against TK; CHEMBL340488, CHEMBL1966988, and ZINC000828645375 against DHFR; and CHEMBL3913373, ZINC000016682972, and CHEMBL3142997 against MetAP2.The compounds exhibited high stabilities and low binding free energies, indicating their abilities to suppress EHP infections; however, further validation is necessary for determining their efficacy.


Subject(s)
Enterocytozoon , Penaeidae , Animals , Seafood , Proteome
4.
Fish Shellfish Immunol Rep ; 3: 100071, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36419609

ABSTRACT

Edwardsiella tarda is one of the serious bacterial pathogens infecting both cultured and wild catfish urging an immediate need for effective protection strategies. This study assessed the effects of dietary supplementation of Pseudomonas aeruginosa FARP72 at 108 cells/g feed (PA diet) for 30 days on the innate immunity parameters, viz., respiratory oxidative burst (ROB) activity, lysozyme, ceruloplasmin, myeloperoxidase, in-vitro nitric oxide (NO) production in addition to the expression of immune genes encoding interleukin-1ß, C3 and transferrin in yellowtail catfish Pangasius pangasius and their resistance to Edwardsiella tarda challenge at a sub-lethal dose of 1.50 × 107 cells/fish. A significant increase in the innate immunity parameters was noted in PA diet-fed catfish on 30 dpf compared to the control. Post E. tarda challenge, the levels of immune parameters increased significantly and peaked at 5 dpi irrespective of feeding to confer protection against E. tarda. Their levels, however, decreased on and from 10 dpi. The results on the expression of immune genes encoding interleukin-1ß, C3 and transferrin in the kidney and liver tissue samples of PA diet-fed P. pangasius upon challenge with E. tarda further confirmed the ability of P. aeruginosa to stimulate primary immune organs at the gene level. The effects of feeding P. aeruginosa FARP72 on the immune functions of catfish as examined by the functional immune assays, thus, demonstrating the innate immune responses of catfish that are differentially stimulated by the PA diet. The findings of our study would help evolve management strategies to confer protection against E. tarda infection in commercial catfish aquaculture.

5.
World J Microbiol Biotechnol ; 38(10): 177, 2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35934729

ABSTRACT

The ability of bacteria to adapt to the external environment is fundamental for their survival. A halotolerant microorganism Enterococcus faecalis able to grow under high salt stress conditions was isolated in the present study. The SDS-PAGE analysis of the secretome showed a protein band with a molecular weight of 28 kDa, gradually increased with an increase in salt concentration, and the highest intensity was observed at 15% salt stress condition. LC-MS/MS analysis of this particular band identified fourteen different proteins, out of which nine proteins were uncharacterized. Further, the function of uncharacterized proteins was predicted based on structure-function relationship using a reverse template search approach deciphering uncharacterized protein into type III polyketide synthases, stress-induced protein-1, Eed-h3k79me3, ba42 protein, 3-methyladenine DNA glycosylase, Atxa protein, membrane-bound respiratory hydrogenase, type-i restriction-modification system methylation subunit and ManxA. STRING network analysis further a showed strong association among the proteins. The processes predicted involvement of these proteins in signal transduction, ions transport, synthesis of the protective layer, cellular homeostasis and regulation of gene expression and different metabolic pathways. Thus, the fourteen proteins identified in the secretome play an essential role in maintaining cellular homeostasis in E. faecalis under high-salinity stress. This may represent a novel and previously unreported strategy by E. faecalis to maintain their normal growth and physiology under high salinity conditions.


Subject(s)
Enterococcus faecalis , Salt Tolerance , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chromatography, Liquid , Enterococcus faecalis/metabolism , Salt Tolerance/genetics , Secretome , Tandem Mass Spectrometry
6.
Microb Pathog ; 164: 105436, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35121070

ABSTRACT

Vibrio parahaemolyticus is a zoonotic bacterium that causes infections in shellfish, fish and higher vertebrates as well as in humans. The Tdh and Trh positive strains of V. parahaemolyticus are generally considered as major virulent strains. The pathogenic mechanisms of Trh positive strain of V. parahaemolyticus are poorly understood. Therefore, in the present study Indian Major Carp, Labeo rohita was intraperitoneally challenged with a Trh positive strain of V. parahaemolyticus below lethal dose 50 (LD50) to understand the innate immune response. A significant upregulation in the respiratory burst activity, myeloperoxidase activity and lysozyme activity of serum was observed in the challenged fishes. However, the serum alpha (α) 2-macro globulin activity and antiprotease activity remained unaltered in the infected fish. The relative expression study of some immune-related genes showed that after the experimental challenge the expression of immune-related genes viz., Toll-like receptor (TLR), Nucleotide-binding oligomerization domain (NOD), Interleukin-1ß (IL-ß), Interleukin-6 (IL-6), Tumor necrosis factor α (TNFα), Inducible nitric oxide synthase (iNOS), Complement factor 3a (C3a) and Heat shock proteins 70 (Hsp70) was upregulated during infection. Furthermore, overexpression of nuclear factor kappa light chain enhancer of activated B cells (NF-κß), Myeloid differentiation primary response 88 (MyD88), Mitogen-activated protein kinases (MAPK) and cysteine-aspartic proteases (Casp 1) was also observed after post-infection which clearly indicated that Trh positive V. parahaemolyticus activates MAPK pathway. The present study strengthens the understanding of molecular pathogenesis and provides insights on gene regulation during infection with Trh positive V. parahaemolyticus.


Subject(s)
Vibrio Infections , Vibrio parahaemolyticus , Animals , Bacterial Proteins/genetics , Hemolysin Proteins/genetics , Mitogen-Activated Protein Kinases , Shellfish/microbiology , Vibrio Infections/microbiology , Vibrio Infections/veterinary , Vibrio parahaemolyticus/genetics
7.
Infect Genet Evol ; 95: 105083, 2021 11.
Article in English | MEDLINE | ID: mdl-34536578

ABSTRACT

Vibrio parahaemolyticus is a gram-negative halophilic bacterium responsible for gastrointestinal infection in human and vibriosis in aquatic animals. The thermostable direct hemolysin (tdh), tdh-related hemolysin (trh) and thermolabile hemolysin (tlh) positive strains of V. parahaemolyticus were identified from brackishwater aquaculture farms of West Bengal and Andhra Pradesh, India. Moreover, the presence of other virulent genes like vcrD1, vopD, vp1680 under type three secretion system 1 (T3SS1) and vcrD2 vopD2, vopB2, vopC2 under type three secretion system 2 (T3SS2) were detected in tdh positive strain of V. parahaemolyticus. Furthermore, the study revealed that the tdh and trh positive isolates were resistant to ß-lactam antibiotics and were able to lyse more than 95% of human Red Blood Cells (RBCs). In addition, both the isolates showed high cytotoxicity in Human Embryonic Kidney (HEK) cell line compared to tlh positive strain. Additionally, intraperitoneal and oral administration of tdh and trh positive strain of V. parahaemolyticus in Indian Major Carp, Labeo rohita caused 100% mortality at the level of 2.0 × 108 CFU ml-1 and 1.6 × 108 CFU ml-1, respectively. In contrast, only 10% mortality was observed in the case of tlh positive strain at the level of 2.5× 108 CFU ml-1. The histopathological changes like infiltration of blood cells and degenerated hepatic tissue in the liver of L. rohita were observed after the experimental challenge. The changes like degeneration of glomeruli, necrosis of renal tubules and Bowman's capsule were observed in the kidney section. Ragged, irregular shaped villi and necrosis of the villus were observed in the intestinal lumen. Overall, the study demonstrates that isolated V. parahaemolyticus is a potent aquatic microbial pathogen. Additionally, as V. parahaemolyticus is also a human pathogen and might pose a threat to the human population, proper management strategies are required to prevent the possible occurrence of disease.


Subject(s)
Bacterial Proteins/genetics , Vibrio parahaemolyticus/physiology , Virulence Factors/genetics , Animals , Penaeidae , Vibrio parahaemolyticus/pathogenicity , Virulence/genetics
8.
Environ Toxicol Pharmacol ; 87: 103685, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34058379

ABSTRACT

Effects of the dietary therapeutic dose of oxytetracycline (OTC) at 80 mg/kg biomass/day for consecutive 10 days on the behaviour, feed intake, mortality, residue accumulation and depletion, antioxidant capacity and immune-related genes expression in juvenile Nile tilapia Oreochromis niloticus were evaluated. OTC-dosing caused mortalities, reduced feed intake, and biomass reduction at 24.5-28.5 °C. OTC residues recorded on day 10 (161.40 ± 11.10 ng/g) were within the maximum residue limits of the Codex Alimentarius. The withdrawal period was 7 days as per the European Commission's regulation. Traces of residues were present even on day 42 post-OTC-dosing. Dietary OTC reduced the antioxidant capacity of the liver and muscle tissues and down-regulated the expression of tumour necrosis factor-α, interleukin-1ß, and heat shock protein-70 genes in the liver significantly during the dosing period. The data generated on the biosafety of OTC-dosing may offer inputs for the development of management strategies in maintaining fish health and food safety.


Subject(s)
Anti-Bacterial Agents/adverse effects , Cichlids , Oxytetracycline/adverse effects , Animals , Cichlids/genetics , Cichlids/growth & development , Cichlids/immunology , Cichlids/metabolism , Diet/veterinary , Eating/drug effects , Fish Proteins/genetics , Fish Proteins/metabolism , Gene Expression Regulation/drug effects , HSP70 Heat-Shock Proteins/genetics , Interleukin-1beta/genetics , Liver/drug effects , Liver/immunology , Liver/metabolism , Malondialdehyde/metabolism , Muscles/drug effects , Muscles/metabolism , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/genetics
9.
Gene ; 758: 144951, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-32683080

ABSTRACT

Antibiotic resistance is one of the major health concerns of the present century. The direct discharge of urban sewage, hospital effluents, and pharmaceutical wastes increases the concentration of antibiotics in riverine ecosystems. This provides selection pressure for the development of novel antibiotic-resistant strains. In this study, metagenomics approach was employed a for constructing a comprehensive profile of the Antibiotic Resistance Genes (ARGs) identified in the sediments of the Yamuna River. A total of 139 ARGs were identified from 39 microbial species. Abundance analysis revealed that, aminoglycoside, beta-lactam, macrolide, and tetracycline resistance genes were highly abundant in the sediment samples obtained from the Yamuna River. The evolutionary relationships among the ARGs were studied by phylogenetic analyses, which revealed that, the identified resistome comprised eight clusters. Network analysis was performed for investigating the broad-spectrum profiles of the ARGs and their enrichment in different biological functions and pathways. Protein-protein interaction (PPI) analyses revealed that, 76, 36, 18, and 5 Gene Ontology (GO)-terms were significantly enriched in Biological process, Molecular Function, Cellular Component, and KEGG Pathways analysis, respectively. The present study elucidates the ecology of microbial antibiotic resistance in the riverine ecosystem of the Yamuna River and provides novel insights into the environmental hotspots that are amenable to the emergence of ARGs in the contaminated riverine hydrosphere.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Geologic Sediments/microbiology , Water Pollutants, Chemical/analysis , Agriculture , Bacteria/genetics , Bacteria/isolation & purification , Ecosystem , Genes, Bacterial/genetics , India , Metagenome/genetics , Metagenomics , Microbial Sensitivity Tests , Phylogeny , Prescription Drug Overuse/adverse effects , Rivers/microbiology
10.
Microb Pathog ; 127: 172-182, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30503957

ABSTRACT

Vibrio parahaemolyticus is a major seafood-borne pathogen that causes life-threatening gastroenteric diseases in humans through the consumption of contaminated seafoods. V. parahaemolyticus produces different kinds of toxins, including thermostable direct hemolysin (TDH), TDH-related hemolysin (TRH), and some effector proteins belonging to the Type 3 Secretion System, out of which TDH and TRH are considered to be the major factors for virulence. Although TRH is one of the major virulent proteins, there is a dearth of understanding about the structural and functional properties of this protein. This study therefore aimed to amplify the full length trh gene from V. parahaemolyticus and perform sequence-based analyses, followed by structural and functional analyses of the TRH protein using different bioinformatics tools. The TRH protein shares significant conservedness with the TDH protein. A multiple sequence alignment of TRH proteins from Vibrio and non-Vibrio species revealed that the TRH protein is highly conserved throughout evolution. The three dimensional (3D) structure of the TRH protein was constructed by comparative modelling and the quality of the predicted model was verified. Molecular dynamics simulations were performed to understand the dynamics, residual fluctuations, and the compactness of the protein. The structure of TRH was found to contain 19 pockets, of which one (pocket ID: 2) was predicted to be important from the view of drug design. Eleven residues (E138, Y140, C151, F158, C161, K162, S163, and Q164), which are reported to actively participate in the formation of the tetrameric structure, were present in this pocket. This study extends our understanding of the structural and functional dynamics of the TRH protein and as well as provides new insights for the treatment and prevention of V. parahaemolyticus infections.


Subject(s)
Hemolysin Proteins/chemistry , Molecular Dynamics Simulation , Vibrio parahaemolyticus/chemistry , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , Hemolysin Proteins/genetics , Hemolytic Agents/chemistry , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Sequence Homology, Amino Acid , Vibrio parahaemolyticus/genetics
11.
Mitochondrial DNA B Resour ; 4(2): 2330-2331, 2019 Jul 12.
Article in English | MEDLINE | ID: mdl-33365529

ABSTRACT

The complete mitogenome of Osteobrama belangeri is described using Ion Torrent (PGM sequencer), which was 16,609 bp in size comprising 13 mRNAs, teo rRNA genes, 22 tRNAs, and 926 bp as D-Loop control region, in addition to gene order and organization, being similar to most of the other related Cypriniformes fish mitogenome of NCBI databases. The all 22 tRNAs were packed into a typical clover-leaf structure. In the present study, the mitogenome has 99% similarity to the complete mitogenome sequence of O. belangeri mitogenome details previously and also would be helpful in understanding the phylogenetics, population genetics, and evolution of family Cyprinidae fishes.

12.
Mitochondrial DNA A DNA Mapp Seq Anal ; 29(2): 199-205, 2018 03.
Article in English | MEDLINE | ID: mdl-28024428

ABSTRACT

The population structure and genetic diversity of Rohu (Labeo rohita Hamilton, 1822) was studied by analysis of the partial sequences of mitochondrial DNA cytochrome b region. We examined 133 samples collected from six locations in three geographically isolated rivers of India. Analysis of 11 haplotypes showed low haplotype diversity (0.00150), nucleotide diversity (π) (0.02884) and low heterogeneity value (0.00374). Analysis of molecular variance (AMOVA) revealed the genetic diversity of L. rohita within population is very high than between the populations. The Fst scores (-0.07479 to 0.07022) were the indication of low genetic structure of L. rohita populations of three rivers of India. Conspicuously, Farakka-Bharuch population pair Fst score of 0.0000, although the sampling sites are from different rivers. The phylogenetic reconstruction of unique haplotypes revealed sharing of a single central haplotype (Hap_1) by all the six populations with a point mutations ranging from 1-25 nucleotides.


Subject(s)
Carps/classification , Cytochromes b/genetics , Point Mutation , Sequence Analysis, DNA/methods , Animals , Carps/genetics , Evolution, Molecular , Fish Proteins/genetics , Genetic Variation , Genetics, Population , Haplotypes , India , Phylogeny , Rivers
13.
Mitochondrial DNA A DNA Mapp Seq Anal ; 29(1): 126-131, 2018 01.
Article in English | MEDLINE | ID: mdl-28071981

ABSTRACT

Catla (Catla catla) is a one of the most harvested Indian major carps and is widely cultured fish species in Indian subcontinent. In the present study, genetic variability between hatchery and wild stocks of Catla was surveyed using sequence data of mitochondrial DNA of partial 307 bp of cytochrome b region. A total of 174 Catla individuals were examined from three different river basins and hatcheries. Significant genetic heterogeneity was observed for the sequence data (FST = 0.308, p ≤ 0.001). However, analysis of molecular variance (AMOVA) resulted in insignificant genetic differentiation among the samples of three rivers and culture zones (FCT = -0.10, p = 0.44). The result suggested a significant genetic variation within different riverine system, low genetic differentiation among samples from river basins and a lack of genetic variation in hatchery populations.


Subject(s)
Cyprinidae/genetics , Genes, Mitochondrial , Genetic Variation , Animals , Animals, Domestic/genetics , Animals, Wild/genetics , Cyprinidae/metabolism , Cytochromes b/genetics , Genetics, Population , India , Sequence Analysis, DNA
14.
Article in English | MEDLINE | ID: mdl-24521501

ABSTRACT

Osteobrama belangeri is an important medium carp endemic to Manipur state in India Myanmar and Yunnan Province of China. Although the species is listed as Near Threatened species according to IUCN status with sizeable population available in Myanmar, it is Extinct in the Wild in Manipur. An 842 bp segment ATP synthase 6/8 region of mtDNA was sequenced and analysed for 56 O. belangeri individuals. Analysis of population differentiation showed no significant genetic differentiation between the four sampling localities (ΦST = -0.034, p = 0.819). Results were further corroborated by a non-significant nearest neighbour statistics (Snn = 0.223, p = 0.897) and exact test of population differentiation (p = 0.893). Phylogeographic analysis revealed two haplogroups, but there was no obvious phylogeographic pattern separating the sampling localities. The present study suggests a single panmictic population of O. belangeri in Indian region.


Subject(s)
Cyprinidae/genetics , DNA, Mitochondrial/genetics , Genetics, Population , Sequence Analysis, DNA , Animals , Haplotypes , India , Mitochondrial Proton-Translocating ATPases/genetics , Phylogeography
15.
Mitochondrial DNA ; 26(3): 334-6, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25909754

ABSTRACT

A 307 bp segment of Cytochrome b gene of mtDNA was sequenced and analyzed for 90 individuals of Cirrhinus mrigala collected across the three rivers, namely Ganges, Narmada and Brahmaputra. Analyses revealed the presence of 14 haplotypes with haplotype diversity (h) ranging from 0.304 to 0.692, and nucleotide diversity (π) 0.002-0.043. The majority of variation was found within the population (96.21%), and the FST value (0.035) as well as the value of exact test of population differentiation (0.893) were found to be insignificant (p<0.05). Analysis of molecular variance (AMOVA) also indicated insignificant differentiation among sub-populations. Generally, low genetic differences were observed even though those populations were from different geographic locations. The present study suggests a single panmictic population of C. mrigala across the three rivers of India.


Subject(s)
Carps/genetics , Cytochromes b/genetics , DNA, Mitochondrial/analysis , Genetic Variation , Analysis of Variance , Animals , Base Composition , Cytochromes b/chemistry , DNA, Mitochondrial/genetics , Genetic Drift , Haplotypes , India , Polymorphism, Genetic , Rivers , Sequence Analysis, DNA
17.
Genome Announc ; 3(1)2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25573926

ABSTRACT

Halomonas salina strain CIFRI1 is an extremely salt-stress-tolerant bacterium isolated from the salt crystals of the east coast of India. Here we report the annotated 3.45-Mb draft genome sequence of strain CIFRI1 having 86 contigs with 3,139 protein coding loci, including 62 RNA genes.

18.
J Amino Acids ; 2014: 269797, 2014.
Article in English | MEDLINE | ID: mdl-25379285

ABSTRACT

Proteins and amino acids are important biomolecules which regulate key metabolic pathways and serve as precursors for synthesis of biologically important substances; moreover, amino acids are building blocks of proteins. Fish is an important dietary source of quality animal proteins and amino acids and play important role in human nutrition. In the present investigation, crude protein content and amino acid compositions of important food fishes from different habitats have been studied. Crude protein content was determined by Kjeldahl method and amino acid composition was analyzed by high performance liquid chromatography and information on 27 food fishes was generated. The analysis showed that the cold water species are rich in lysine and aspartic acid, marine fishes in leucine, small indigenous fishes in histidine, and the carps and catfishes in glutamic acid and glycine. The enriched nutrition knowledge base would enhance the utility of fish as a source of quality animal proteins and amino acids and aid in their inclusion in dietary counseling and patient guidance for specific nutritional needs.

19.
Appl Biochem Biotechnol ; 169(1): 192-200, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23179275

ABSTRACT

Lipids are important structural components of cell membranes and have profound effect on membrane fluidity. Lipid profiling and lipidomics have captured increased attention due to the well-recognized roles of lipids in numerous human diseases. Investigating lipid profiles not only provides insights into the specific roles of lipid molecular species in health and diseases, but can also help in identifying potential preventive or therapeutic biomarkers. Cataract, the loss of transparency of eye lens, is a disease of protein aggregation. There are several factors contributing to the stability in protein conformation. Age-related changes in lipid composition could be a contributing factor for altered protein-lipid interaction leading to protein aggregation and cataract. Keeping this in view, in the present study, fatty acid profiling from different age groups of lenses was carried out, using a freshwater catfish as the model. Total lipids were extracted from lenses of three different age groups of fishes (young, adult, and aged) and fatty acid methyl esters (FAME) were prepared and FAME analysis was carried out using gas chromatography-mass spectrometry. The results showed that three fatty acids viz. heneicosylic acid (C21), docosahexaenoic acid (C22:6), nervonic acid (C24:1) which were not present in the adult lens, appeared in the aged lens. On the other hand, eicosenoic acid (C20:1) present in the adult lens was found to be absent in the aged lens. The appearance or disappearance of these fatty acids can possibly serve as biomarkers of aging lens which is the most vulnerable stage for cataract development.


Subject(s)
Aging/metabolism , Biomarkers/analysis , Cataract/metabolism , Fatty Acids/analysis , Lens, Crystalline/metabolism , Animals , Biomarkers/metabolism , Catfishes , Disease Models, Animal , Fatty Acids/metabolism , Humans , Lens, Crystalline/chemistry , Lens, Crystalline/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL