Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Trace Elem Res ; 199(5): 1812-1822, 2021 May.
Article in English | MEDLINE | ID: mdl-32743762

ABSTRACT

The green approach of nanoparticle synthesis has gained more attention by researchers because of its nontoxic, eco-friendly, biocompatible, and sustainable nature. The present research investigated the anticancer effectiveness of silver nanoparticles synthesized from marine algae Chaetomorpha linum (C. linum) against colon cancer cell HCT-116 in vitro. Biosynthesized silver nanoparticles (C-AgNPs) are characterized using UV-spectrophotometry, dynamic light scattering (DLS), X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). We demonstrated the dose-dependent cytotoxic effect of C-AgNPs in human colorectal carcinoma cells (HCT-116) using MTT assay. The apoptosis induction in HCT-116 cells caused by C-AgNPs has studied fluorescence microscope by staining with fluorogenic agents 4',6-diamidino-2-phenylindole (DAPI), rhodamine 123, and 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA). By using a flow cytometric test, the apoptotic action of C-AgNPs was performed. The immunoblotting study of caspases, as well as pro-apoptotic and anti-apoptotic protein expression, was studied using the PCR technique to understand the underlying molecular mechanism of C-AgNPs on cancer cells. The apoptotic studies showed an increase in the expression of apoptotic caspase 3, caspase 9, BH3-interacting domain death agonist (Bid), and Bax, along with a decrease in the anti-apoptotic protein like Bcl-2 and Bcl-xl, thereby veritably confirmed by immunoblotting and qPCR technique. The biosynthesized C-AgNPs was an efficient anticancer agent that can induce apoptosis in the HCT-116 colon cells.


Subject(s)
Colonic Neoplasms , Flax , Metal Nanoparticles , Anti-Bacterial Agents , Colonic Neoplasms/drug therapy , Humans , Plant Extracts , Silver/pharmacology , Spectroscopy, Fourier Transform Infrared
2.
IET Nanobiotechnol ; 10(4): 184-9, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27463787

ABSTRACT

In the present study, green synthesis and cost effective approach of silver nanoparticles using wild medicinal mushroom Ganoderma applanatum (Pers.) Pat. from Similipal Biosphere Reserve, Odisha, India is reported. The biosynthesised AgNPs were characterised using UV-visible spectroscopy, particle analyser and scanning electron microscopy studies. It was found by dynamic light scattering analysis, that the average size and charges of the AgNPs were 133.0 ± 0.361 nm and -6.01 ± 5.30 mV, respectively. Moreover, the Fourier transform infrared study was also conducted to identify the biomolecules or functional groups responsible for the reduction of Ag and stabilisation of the AgNPs. The potential biomedical application with reference to antimicrobial activity of the synthesised AgNPs was investigated against some pathogenic microorganisms viz. Escherichia coli, Bacillus subtilis, Staphylococcus epidermidis, Vibrio cholerae, Staphylococcus aureus and Shigella flexneri.


Subject(s)
Bacterial Physiological Phenomena/drug effects , Ganoderma/chemistry , Green Chemistry Technology/methods , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Silver/administration & dosage , Anti-Infective Agents/administration & dosage , Anti-Infective Agents/chemical synthesis , Cell Extracts/chemistry , Cell Survival/drug effects , Materials Testing , Metal Nanoparticles/ultrastructure , Particle Size , Silver/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...