Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
J Med Chem ; 64(1): 326-342, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33356244

ABSTRACT

Sickle cell disease (SCD) is a genetic disorder caused by a single point mutation (ß6 Glu → Val) on the ß-chain of adult hemoglobin (HbA) that results in sickled hemoglobin (HbS). In the deoxygenated state, polymerization of HbS leads to sickling of red blood cells (RBC). Several downstream consequences of polymerization and RBC sickling include vaso-occlusion, hemolytic anemia, and stroke. We report the design of a noncovalent modulator of HbS, clinical candidate PF-07059013 (23). The seminal hit molecule was discovered by virtual screening and confirmed through a series of biochemical and biophysical studies. After a significant optimization effort, we arrived at 23, a compound that specifically binds to Hb with nanomolar affinity and displays strong partitioning into RBCs. In a 2-week multiple dose study using Townes SCD mice, 23 showed a 37.8% (±9.0%) reduction in sickling compared to vehicle treated mice. 23 (PF-07059013) has advanced to phase 1 clinical trials.


Subject(s)
Anemia, Sickle Cell/drug therapy , Hemoglobin A/drug effects , Hemoglobin, Sickle/drug effects , Quinolines/pharmacology , Quinolines/therapeutic use , Animals , Erythrocytes/metabolism , Mice , Oxygen/metabolism , Quinolines/chemistry
2.
J Med Chem ; 62(17): 7669-7683, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31415173

ABSTRACT

The first chemical probe to primarily occupy the co-factor binding site of a Su(var)3-9, enhancer of a zeste, trithorax (SET) domain containing protein lysine methyltransferase (PKMT) is reported. Protein methyltransferases require S-adenosylmethionine (SAM) as a co-factor (methyl donor) for enzymatic activity. However, SAM itself represents a poor medicinal chemistry starting point for a selective, cell-active inhibitor given its extreme physicochemical properties and its role in multiple cellular processes. A previously untested medicinal chemistry strategy of deliberate file enrichment around molecules bearing the hallmarks of SAM, but with improved lead-like properties from the outset, yielded viable hits against SET and MYND domain-containing protein 2 (SMYD2) that were shown to bind in the co-factor site. These leads were optimized to identify a highly biochemically potent, PKMT-selective, and cell-active chemical probe. While substrate-based inhibitors of PKMTs are known, this represents a novel, co-factor-derived strategy for the inhibition of SMYD2 which may also prove applicable to lysine methyltransferase family members previously thought of as intractable.


Subject(s)
Enzyme Inhibitors/pharmacology , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , S-Adenosylmethionine/pharmacology , Small Molecule Libraries/pharmacology , Binding Sites/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Histone-Lysine N-Methyltransferase/isolation & purification , Histone-Lysine N-Methyltransferase/metabolism , Humans , Models, Molecular , Molecular Structure , S-Adenosylmethionine/chemistry , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship
3.
ACS Med Chem Lett ; 10(1): 80-85, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30655951

ABSTRACT

Potent covalent inhibitors of Bruton's tyrosine kinase (BTK) based on an aminopyrazole carboxamide scaffold have been identified. Compared to acrylamide-based covalent reactive groups leading to irreversible protein adducts, cyanamide-based reversible-covalent inhibitors provided the highest combined BTK potency and EGFR selectivity. The cyanamide covalent mechanism with BTK was confirmed through enzyme kinetic, NMR, MS, and X-ray crystallographic studies. The lead cyanamide-based inhibitors demonstrated excellent kinome selectivity and rat pharmacokinetic properties.

4.
J Med Chem ; 61(3): 1130-1152, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29298069

ABSTRACT

Janus kinases (JAKs) are intracellular tyrosine kinases that mediate the signaling of numerous cytokines and growth factors involved in the regulation of immunity, inflammation, and hematopoiesis. As JAK1 pairs with JAK2, JAK3, and TYK2, a JAK1-selective inhibitor would be expected to inhibit many cytokines involved in inflammation and immune function while avoiding inhibition of the JAK2 homodimer regulating erythropoietin and thrombopoietin signaling. Our efforts began with tofacitinib, an oral JAK inhibitor approved for the treatment of rheumatoid arthritis. Through modification of the 3-aminopiperidine linker in tofacitinib, we discovered highly selective JAK1 inhibitors with nanomolar potency in a human whole blood assay. Improvements in JAK1 potency and selectivity were achieved via structural modifications suggested by X-ray crystallographic analysis. After demonstrating efficacy in a rat adjuvant-induced arthritis (rAIA) model, PF-04965842 (25) was nominated as a clinical candidate for the treatment of JAK1-mediated autoimmune diseases.


Subject(s)
Autoimmune Diseases/drug therapy , Cyclobutanes/pharmacology , Janus Kinase 1/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Sulfonamides/pharmacology , Animals , Arthritis, Experimental/drug therapy , Cyclobutanes/chemistry , Cyclobutanes/pharmacokinetics , Cyclobutanes/therapeutic use , Dogs , Drug Evaluation, Preclinical , Humans , Inhibitory Concentration 50 , Janus Kinase 1/chemistry , Janus Kinase 2/antagonists & inhibitors , Models, Molecular , Protein Conformation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Pyrimidines/therapeutic use , Pyrroles/chemistry , Pyrroles/pharmacokinetics , Pyrroles/therapeutic use , Rats , Substrate Specificity , Sulfonamides/chemistry , Sulfonamides/pharmacokinetics , Sulfonamides/therapeutic use , Tissue Distribution
5.
J Med Chem ; 60(7): 3094-3108, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28257199

ABSTRACT

The C-5 substituted 2,4-diaminoquinazoline RG3039 (compound 1), a member of a chemical series that was identified and optimized using an SMN2 promoter screen, prolongs survival and improves motor function in a mouse model of spinal muscular atrophy (SMA). It is a potent inhibitor of the mRNA decapping scavenger enzyme (DcpS), but the mechanism whereby DcpS inhibition leads to therapeutic benefit is unclear. Compound 1 is a dibasic lipophilic molecule that is predicted to accumulate in lysosomes. To understand if the in vivo efficacy is due to DcpS inhibition or other effects resulting from the physicochemical properties of the chemotype, we undertook structure based molecular design to identify DcpS inhibitors with improved physicochemical properties. Herein we describe the design, synthesis, and in vitro pharmacological characterization of these DcpS inhibitors along with the in vivo mouse CNS PK profile of PF-DcpSi (compound 24), one of the analogs found to be efficacious in SMA mouse model.


Subject(s)
Drug Design , Endoribonucleases/antagonists & inhibitors , Muscular Atrophy, Spinal/drug therapy , Quinazolines/chemistry , Quinazolines/therapeutic use , RNA, Messenger/antagonists & inhibitors , Animals , Disease Models, Animal , Endoribonucleases/genetics , Endoribonucleases/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , HEK293 Cells , Humans , Mice , Molecular Docking Simulation , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Quinazolines/pharmacokinetics , Quinazolines/pharmacology , RNA, Messenger/genetics , Survival of Motor Neuron 2 Protein
6.
Chembiochem ; 17(20): 1925-1930, 2016 10 17.
Article in English | MEDLINE | ID: mdl-27504718

ABSTRACT

Sulfonyl fluoride (SF)-based activity probes have become important tools in chemical biology. Herein, exploiting the relative chemical stability of SF to carry out a number of unprecedented SF-sparing functional group manipulations, we report the chemoselective synthesis of a toolbox of highly functionalized aryl SF monomers that we used to quickly prepare SF chemical biology probes. In addition to SF, the monomers bear an embedded click handle (a terminal alkyne that can perform copper(I)-mediated azide-alkyne cycloaddition). The monomers can be used either as fragments to prepare clickable SF analogues of drugs (biologically active compounds) bearing an aryl ring or, alternatively, attached to drugs as minimalist clickable aryl SF substituents.


Subject(s)
Molecular Probes/chemical synthesis , Sulfinic Acids/chemical synthesis , Click Chemistry , Models, Molecular , Molecular Probes/chemistry , Molecular Structure , Sulfinic Acids/chemistry
7.
Mol Biosyst ; 11(10): 2709-12, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25959423

ABSTRACT

Despite its diverse applications, such as identification of the protein binding partners of small molecules and investigation of intracellular drug-target engagement, photoaffinity labelling (PAL) is intrinsically challenging, primarily due to the difficulty in discovering functionally active photoaffinity probes. Here we describe the creation of a chemoproteomic library to discover a novel photoaffinity probe for DcpS, an mRNA decapping enzyme that is a putative target for Spinal Muscular Atrophy. This library approach expedites the discovery of photoaffinity probes and expands the chemical biology toolbox to include RNA cap-binding proteins.


Subject(s)
Endoribonucleases/metabolism , Molecular Probes/chemistry , Photoaffinity Labels/chemistry , Binding Sites , Endoribonucleases/chemistry , Gene Library , Humans , Models, Molecular , Molecular Probes/metabolism , Quinazolines/chemistry
8.
ACS Chem Biol ; 10(4): 1094-8, 2015 Apr 17.
Article in English | MEDLINE | ID: mdl-25571984

ABSTRACT

This work describes the first rational targeting of tyrosine residues in a protein binding site by small-molecule covalent probes. Specific tyrosine residues in the active site of the mRNA-decapping scavenger enzyme DcpS were modified using reactive sulfonyl fluoride covalent inhibitors. Structure-based molecular design was used to create an alkyne-tagged probe bearing the sulfonyl fluoride warhead, thus enabling the efficient capture of the protein from a complex proteome. Use of the probe in competition experiments with a diaminoquinazoline DcpS inhibitor permitted the quantification of intracellular target occupancy. As a result, diaminoquinazoline upregulators of survival motor neuron protein that are used for the treatment of spinal muscular atrophy were confirmed as inhibitors of DcpS in human primary cells. This work illustrates the utility of sulfonyl fluoride probes designed to react with specific tyrosine residues of a protein and augments the chemical biology toolkit by these probes uses in target validation and molecular pharmacology.


Subject(s)
Endoribonucleases/metabolism , Enzyme Inhibitors/pharmacology , Molecular Probes/chemistry , Sulfinic Acids/chemistry , Tyrosine/metabolism , Catalytic Domain , Cells, Cultured , Chemistry Techniques, Synthetic , Crystallography, X-Ray , Endoribonucleases/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Molecular Probes/chemical synthesis , Molecular Targeted Therapy/methods , Structure-Activity Relationship , Tyrosine/chemistry
9.
Biochem J ; 460(2): 211-22, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24593284

ABSTRACT

ITK (interleukin-2-inducible T-cell kinase) is a critical component of signal transduction in T-cells and has a well-validated role in their proliferation, cytokine release and chemotaxis. ITK is an attractive target for the treatment of T-cell-mediated inflammatory diseases. In the present study we describe the discovery of kinase inhibitors that preferentially bind to an allosteric pocket of ITK. The novel ITK allosteric site was characterized by NMR, surface plasmon resonance, isothermal titration calorimetry, enzymology and X-ray crystallography. Initial screening hits bound to both the allosteric pocket and the ATP site. Successful lead optimization was achieved by improving the contribution of the allosteric component to the overall inhibition. NMR competition experiments demonstrated that the dual-site binders showed higher affinity for the allosteric site compared with the ATP site. Moreover, an optimized inhibitor displayed non-competitive inhibition with respect to ATP as shown by steady-state enzyme kinetics. The activity of the isolated kinase domain and auto-activation of the full-length enzyme were inhibited with similar potency. However, inhibition of the activated full-length enzyme was weaker, presumably because the allosteric site is altered when ITK becomes activated. An optimized lead showed exquisite kinome selectivity and is efficacious in human whole blood and proximal cell-based assays.


Subject(s)
Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Adenosine Triphosphate/pharmacology , Allosteric Regulation , Allosteric Site , Crystallization , Crystallography, X-Ray , Humans , Models, Molecular , Protein Conformation/drug effects , Protein Structure, Tertiary , Surface Plasmon Resonance
10.
J Pharmacol Exp Ther ; 333(3): 707-16, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20228155

ABSTRACT

Rho kinase, is the most widely studied downstream effector of the small Rho GTPase RhoA. Two Rho kinase isoforms have been described and are frequently referred to in the literature as ROCK1 and ROCK2. The RhoA-Rho kinase pathway has been implicated in the recruitment of cellular infiltrates to disease loci in a number of preclinical animal models of inflammatory disease. In this study, we used biochemical enzyme assays and a cellular target biomarker assay to define PF-4950834 [N-methyl-3-{[(4-pyridin-4-ylbenzoyl)amino]methyl}benzamide] as an ATP-competitive, selective Rho kinase inhibitor. We further used PF-4950834 to study the role of Rho kinase activation in lymphocyte and neutrophil migration in addition to the endothelial cell-mediated expression of adhesion molecules and chemokines, which are essential for leukocyte recruitment. The inhibitor blocked stromal cell-derived factor-1alpha-mediated chemotaxis of T lymphocytes in vitro and the synthesis of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 in activated human endothelial cells in vitro. The secretion of chemokines interleukin-8 and monocyte chemoattractant protein-1 was also inhibited in activated endothelial cells. In addition, when dosed orally, the compound potently inhibited neutrophil migration in a carrageenan-induced acute inflammation model. In summary, we have used a pharmacologic approach to link Rho kinase activation to multiple phenotypes that can contribute to leukocyte infiltration. Inhibition of this pathway therefore could be strongly anti-inflammatory and provide therapeutic benefit in chronic inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Benzamides/pharmacology , Protein Kinase Inhibitors/pharmacology , rho-Associated Kinases/antagonists & inhibitors , Animals , Benzamides/pharmacokinetics , Biological Availability , Blotting, Western , Cell Adhesion Molecules/biosynthesis , Cell Movement/drug effects , Chemokines/biosynthesis , Dose-Response Relationship, Drug , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Flow Cytometry , Humans , Inflammation/chemically induced , Inflammation/prevention & control , Interleukin-8/biosynthesis , Jurkat Cells , Lymphocyte Activation/drug effects , Male , Myosin Light Chains/metabolism , Neutrophil Activation/drug effects , Protein Kinase Inhibitors/pharmacokinetics , Rats , Rats, Inbred Lew , Rats, Sprague-Dawley , Receptors, CCR2/biosynthesis
13.
Bioorg Med Chem ; 15(10): 3390-412, 2007 May 15.
Article in English | MEDLINE | ID: mdl-17387018

ABSTRACT

The integrin alpha(v)beta(3) is expressed in a number of cell types and is thought to play a major role in several pathological conditions. Various small molecules that inhibit the integrin have been shown to suppress tumor growth and retinal angiogenesis. The tripeptide Arg-Gly-Asp (RGD), a common binding motif in several ligands that bind to alpha(v)beta(3), has been depeptidized and optimized in our efforts toward discovering a small molecule inhibitor. We recently disclosed the synthesis and biological activity of several small molecules that did not contain any peptide bond and mimic the tripeptide RGD. The phenethyl group in one of the lead compounds was successfully replaced with a cyclopropyl moiety. The new lead compound was optimized for potency, selectivity, and for its ADME properties. We describe herein the discovery, synthesis, and optimization of cyclopropyl containing analogs that are potent and selective inhibitors of alpha(v)beta(3).


Subject(s)
Acetates/chemical synthesis , Acetates/pharmacology , Integrin alphaVbeta3/antagonists & inhibitors , Naphthyridines/chemical synthesis , Naphthyridines/pharmacology , Animals , Area Under Curve , Cell Line , Chromatography, High Pressure Liquid , Crystallography, X-Ray , Drug Design , Half-Life , Humans , Indicators and Reagents , Male , Mice , Rats , Rats, Sprague-Dawley , Spectrophotometry, Ultraviolet , Structure-Activity Relationship , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL