Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
1.
Int J Radiat Oncol Biol Phys ; 119(1): 309-310, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38631746
2.
Future Oncol ; 20(8): 437-446, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38264869

ABSTRACT

Ablative doses of stereotactic body radiotherapy (SBRT) may improve pancreatic cancer outcomes but may carry greater potential for gastrointestinal toxicity. Rucosopasem, an investigational selective dismutase mimetic that converts superoxide to hydrogen peroxide, can potentially increase tumor control of SBRT without compromising safety. GRECO-2 is a phase II, multicenter, randomized, double-blind, placebo-controlled trial of rucosopasem in combination with SBRT in locally advanced or borderline resectable pancreatic cancer. Patients will be randomized to rucosopasem 100 mg or placebo via intravenous infusion over 15 min, before each SBRT fraction (5 × 10 Gy). The primary end point is overall survival. Secondary end points include progression-free survival, locoregional control, time to metastasis, surgical resection rate, best overall response, in-field local response and acute and long-term toxicity.


The use of high doses of radiation delivered directly to tumors (stereotactic body radiation therapy [SBRT]) may improve survival compared with lower doses of radiation in patients with pancreatic cancer, but it may increase side effects. Rucosopasem, an investigational new drug being developed, can potentially improve the ability of SBRT to treat tumors without decreasing safety. In a previous study, median overall survival was improved when patients were treated with SBRT plus avasopasem, a drug that works the same way as rucosopasem. GRECO-2 is a clinical trial of rucosopasem used in combination with SBRT for treatment of localized pancreatic cancer. Patients will be randomly selected to receive either rucosopasem 100 mg or placebo via intravenous infusion over 15 min, before each SBRT treatment. The main result being studied is overall survival. Additional results include amount of time before tumors start to grow, how often patients get tumors surgically removed, best overall response and long-term safety. Clinical Trial Registration: NCT04698915 (ClinicalTrials.gov).


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Radiosurgery , Humans , Clinical Trials, Phase II as Topic , Dose Fractionation, Radiation , Multicenter Studies as Topic , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/radiotherapy , Pancreatic Neoplasms/drug therapy , Radiosurgery/adverse effects , Randomized Controlled Trials as Topic
3.
Radiother Oncol ; 192: 110090, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38224916

ABSTRACT

BACKGROUND AND PURPOSE: The SOFT trial is a prospective, multicenter, phase 2 trial investigating magnetic resonance (MR)-guided stereotactic ablative radiotherapy (SABR) for abdominal, soft tissue metastases in patients with oligometastatic disease (OMD) (clinicaltrials.gov ID NCT04407897). We present the primary endpoint analysis of 1-year treatment-related toxicity (TRAE). MATERIALS AND METHODS: Patients with up to five oligometastases from non-hematological cancers were eligible for inclusion. A risk-adapted strategy prioritized fixed organs at risk (OAR) constraints over target coverage. Fractionation schemes were 45-67.5 Gy in 3-8 fractions. The primary endpoint was grade ≥ 4 TRAE within 12 months post-SABR. The association between the risk of gastrointestinal (GI) toxicity and clinical and dosimetric parameters was tested using a normal tissue complication probability model. RESULTS: We included 121 patients with 147 oligometastatic targets, mainly located in the liver (41 %), lymph nodes (35 %), or adrenal glands (14 %). Nearly half of all targets (48 %, n = 71) were within 10 mm of a radiosensitive OAR. No grade 4 or 5 TRAEs, 3.5 % grade 3 TRAEs, and 43.7 % grade 2 TRAEs were reported within the first year of follow-up. We found a significant association between grade ≥ 2 GI toxicity and the parameters GI OAR D0.1cc, D1cc, and D20cc. CONCLUSION: In this phase II study of MR-guided SABR of oligometastases in the infra-diaphragmatic region, we found a low incidence of toxicity despite half of the lesions being within 10 mm of a radiosensitive OAR. GI OAR D0.1cc, D1cc, and D20cc were associated with grade ≥ 2 GI toxicity.


Subject(s)
Neoplasms , Radiosurgery , Humans , Prospective Studies , Dose Fractionation, Radiation , Radiosurgery/adverse effects
4.
Med Dosim ; 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38233319

ABSTRACT

INTRODUCTION: Magnetic resonance imaging (MRI)-guided radiation therapy has proven to provide many benefits such as real-time tracking, dose escalation, and the ability to perform online adaptive therapy. The objective of this study is to compare curative treatment plans for glioblastoma tumors on a low-field MR-guided linac vs a C-arm linac and evaluate if they are comparable in terms of coverage, organ at risk sparing, delivery time, and deliverability. METHODS: This is a retrospective study that consisted of 15 previously treated patients who received radiation therapy for glioblastoma on a C-arm linac. The CT simulation data used for the original clinical plans was imported into the MR-linac treatment planning system (TPS) and utilized for MR-linac plan generation. The plans were evaluated utilizing the dose volumetric histogram (DVH) and isodose lines, then compared in terms of plan quality consisting of PTV coverage, dose distributions, and OAR constraints. Statistical analysis was performed to compare differences between the two planning techniques. QA was performed on a subset of the plans to verify deliverability. RESULTS: Plans generated on the MR-linac were more heterogenous compared to C-arm linac plans. A statistically significant difference was found in the homogeneity index (HI) and the PTV V105% volume (cc) values. The volume of the normal brain receiving 30 Gy also showed a statistically significant (p = 0.0479) difference, where on average an additional 41.5 cc's of the normal brain tissue received 30 Gy in the MR-linac plans. The maximum dose to the normal brain structure also increased in the MR-linac plans on average by 2.6 Gy (p = 0.0002). Similarly, the average maximum dose to the scalp 4 mm structure was 6.5 Gy higher in the MR-linac plans compared to C-arm linac plans (p = 0.0103). The total MU's were higher in the MR-linac plans compared to the C-arm linac plans (p = 0.0015). CONCLUSIONS: Both MR-linac and C-arm linac plans met constraints for PTV coverage and OAR sparing, were deliverable, and resulted to be clinically acceptable. However, our study showed that MR-linac plans were not as conformal or as homogenous as C-arm linac plans utilizing noncoplanar beams.

5.
Semin Radiat Oncol ; 34(1): 23-35, 2024 01.
Article in English | MEDLINE | ID: mdl-38105090

ABSTRACT

The introduction of online adaptive magnetic resonance (MR)-guided radiation therapy (RT) has enabled safe treatment of pancreatic cancer with ablative doses. The aim of this review is to provide a comprehensive overview of the current literature on the use and clinical outcomes of MR-guided RT for treatment of pancreatic cancer. Relevant outcomes included toxicity, tumor response, survival and quality of life. The results of these studies support further investigation of the effectiveness of ablative MR-guided SBRT as a low-toxic, minimally-invasive therapy for localized pancreatic cancer in prospective clinical trials.


Subject(s)
Pancreatic Neoplasms , Radiosurgery , Humans , Prospective Studies , Quality of Life , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/radiotherapy , Pancreatic Neoplasms/pathology , Magnetic Resonance Imaging/methods , Radiosurgery/methods , Magnetic Resonance Spectroscopy
6.
Semin Radiat Oncol ; 34(1): 92-106, 2024 01.
Article in English | MEDLINE | ID: mdl-38105098

ABSTRACT

High quality radiation therapy requires highly accurate and precise dose delivery. MR-guided radiotherapy (MRgRT), integrating an MRI scanner with a linear accelerator, offers excellent quality images in the treatment room without subjecting patient to ionizing radiation. MRgRT therefore provides a powerful tool for intrafraction motion management. This paper summarizes different sources of intrafraction motion for different disease sites and describes the MR imaging techniques available to visualize and quantify intrafraction motion. It provides an overview of MR guided motion management strategies and of the current technical capabilities of the commercially available MRgRT systems. It describes how these motion management capabilities are currently being used in clinical studies, protocols and provides a future outlook.


Subject(s)
Radiotherapy, Image-Guided , Humans , Radiotherapy Dosage , Radiotherapy, Image-Guided/methods , Radiotherapy Planning, Computer-Assisted/methods , Particle Accelerators , Magnetic Resonance Imaging/methods
7.
Radiother Oncol ; 191: 110064, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38135187

ABSTRACT

BACKGROUND AND PURPOSE: Radiation dose escalation may improve local control (LC) and overall survival (OS) in select pancreatic ductal adenocarcinoma (PDAC) patients. We prospectively evaluated the safety and efficacy of ablative stereotactic magnetic resonance (MR)-guided adaptive radiation therapy (SMART) for borderline resectable (BRPC) and locally advanced pancreas cancer (LAPC). The primary endpoint of acute grade ≥ 3 gastrointestinal (GI) toxicity definitely related to SMART was previously published with median follow-up (FU) 8.8 months from SMART. We now present more mature outcomes including OS and late toxicity. MATERIALS AND METHODS: This prospective, multi-center, single-arm open-label phase 2 trial (NCT03621644) enrolled 136 patients (LAPC 56.6 %; BRPC 43.4 %) after ≥ 3 months of any chemotherapy without distant progression and CA19-9 ≤ 500 U/mL. SMART was delivered on a 0.35 T MR-guided system prescribed to 50 Gy in 5 fractions (biologically effective dose10 [BED10] = 100 Gy). Elective coverage was optional. Surgery and chemotherapy were permitted after SMART. RESULTS: Mean age was 65.7 years (range, 36-85), induction FOLFIRINOX was common (81.7 %), most received elective coverage (57.4 %), and 34.6 % had surgery after SMART. Median FU was 22.9 months from diagnosis and 14.2 months from SMART, respectively. 2-year OS from diagnosis and SMART were 53.6 % and 40.5 %, respectively. Late grade ≥ 3 toxicity definitely, probably, or possibly attributed to SMART were observed in 0 %, 4.6 %, and 11.5 % patients, respectively. CONCLUSIONS: Long-term outcomes from the phase 2 SMART trial demonstrate encouraging OS and limited severe toxicity. Additional prospective evaluation of this novel strategy is warranted.


Subject(s)
Pancreatic Neoplasms , Radiosurgery , Humans , Aged , Pancreatic Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Radiotherapy Planning, Computer-Assisted , Radiosurgery/adverse effects
8.
Clin Transl Radiat Oncol ; 41: 100627, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37441543

ABSTRACT

Purpose: Magnetic resonance-guided stereotactic body radiation therapy (MRgSBRT) with optional online adaptation has shown promise in delivering ablative doses to unresectable primary liver cancer. However, there remain limited data on the indications for online adaptation as well as dosimetric and longer-term clinical outcomes following MRgSBRT. Methods and Materials: Patients with unresectable hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), and combined biphenotypic hepatocellular-cholangiocarcinoma (cHCC-CCA) who completed MRgSBRT to 50 Gy in 5 fractions between June of 2015 and December of 2021 were analyzed. The necessity of adaptive techniques was evaluated. The cumulative incidence of local progression was evaluated and survival and competing risk analyses were performed. Results: Ninety-nine analyzable patients completed MRgSBRT during the study period and 54 % had planning target volumes (PTVs) within 1 cm of the duodenum, small bowel, or stomach at the time of simulation. Online adaptive RT was used in 53 % of patients to correct organ-at-risk constraint violation and/or to improve target coverage. In patients who underwent adaptive RT planning, online replanning resulted in superior target coverage when compared to projected, non-adaptive plans (median coverage ≥ 95 % at 47.5 Gy: 91 % [IQR: 82-96] before adaptation vs 95 % [IQR: 87-99] after adaptation, p < 0.01). The median follow-up for surviving patients was 34.2 months for patients with HCC and 10.1 months for patients with CCA/cHCC-CCA. For all patients, the 2-year cumulative incidence of local progression was 9.8 % (95 % CI: 1.5-18 %) for patients with HCC and 9.0 % (95 % CI: 0.1-18) for patients with CCA/cHCC-CCA. Grade 3 through 5 acute and late clinical gastrointestinal toxicities were observed in < 10 % of the patients. Conclusions: MRgSBRT, with the option for online adaptive planning when merited, allows delivery of ablative doses to primary liver tumors with excellent local control with acceptable toxicities. Additional studies evaluating the efficacy and safety of MRgSBRT in the treatment of primary liver cancer are warranted.

9.
J Appl Clin Med Phys ; 24(6): e13919, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37278646

ABSTRACT

To evaluate the image quality, dosimetric properties, setup reproducibility, and planar cine motion detection of a high-resolution brain coil and integrated stereotactic brain immobilization system that constitute a new brain treatment package (BTP) on a low-field magnetic resonance imaging (MRI) linear accelerator (MR-linac). Image quality of the high-resolution brain coil was evaluated with the 17 cm diameter spherical phantom and the American College of Radiology (ACR) Large MRI Phantom. Patient imaging studies approved by the institutional review board (IRB) assisted in selecting image acquisition parameters. Radiographic and dosimetric evaluation of the high-resolution brain coil and the associated immobilization devices was performed using dose calculations and ion chamber measurements. End-to-end testing was performed simulating a cranial lesion in a phantom. Inter-fraction setup variability and motion detection tests were evaluated on four healthy volunteers. Inter-fraction variability was assessed based on three repeat setups for each volunteer. Motion detection was evaluated using three-plane (axial, coronal, and sagittal) MR-cine imaging sessions, where volunteers were asked to perform a set of specific motions. The images were post-processed and evaluated using an in-house program. Contrast resolution of the high-resolution brain coil is superior to the head/neck and torso coils. The BTP receiver coils have an average HU value of 525 HU. The most significant radiation attenuation (3.14%) of the BTP, occurs through the lateral portion of the overlay board where the high-precision lateral-profile mask clips attach to the overlay. The greatest inter-fraction setup variability occurred in the pitch (average 1.08 degree) and translationally in the superior/inferior direction (average 4.88 mm). Three plane cine imaging with the BTP was able to detect large and small motions. Small voluntary motions, sub-millimeter in magnitude (maximum 0.9 mm), from motion of external limbs were detected. Imaging tests, inter-fraction setup variability, attenuation, and end-to-end measurements were quantified and performed for the BTP. Results demonstrate better contrast resolution and low contrast detectability that allows for better visualization of soft tissue anatomical changes relative to head/neck and torso coil systems.


Subject(s)
Brain Neoplasms , Humans , Reproducibility of Results , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Brain , Imaging, Three-Dimensional , Magnetic Resonance Imaging/methods , Phantoms, Imaging
10.
Int J Radiat Oncol Biol Phys ; 117(4): 799-808, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37210048

ABSTRACT

PURPOSE: Magnetic resonance (MR) image guidance may facilitate safe ultrahypofractionated radiation dose escalation for inoperable pancreatic ductal adenocarcinoma. We conducted a prospective study evaluating the safety of 5-fraction Stereotactic MR-guided on-table Adaptive Radiation Therapy (SMART) for locally advanced (LAPC) and borderline resectable pancreatic cancer (BRPC). METHODS AND MATERIALS: Patients with LAPC or BRPC were eligible for this multi-institutional, single-arm, phase 2 trial after ≥3 months of systemic therapy without evidence of distant progression. Fifty gray in 5 fractions was prescribed on a 0.35T MR-guided radiation delivery system. The primary endpoint was acute grade ≥3 gastrointestinal (GI) toxicity definitely attributed to SMART. RESULTS: One hundred thirty-six patients (LAPC 56.6%, BRPC 43.4%) were enrolled between January 2019 and January 2022. Mean age was 65.7 (36-85) years. Head of pancreas lesions were most common (66.9%). Induction chemotherapy mostly consisted of (modified)FOLFIRINOX (65.4%) or gemcitabine/nab-paclitaxel (16.9%). Mean CA19-9 after induction chemotherapy and before SMART was 71.7 U/mL (0-468). On-table adaptive replanning was performed for 93.1% of all delivered fractions. Median follow-up from diagnosis and SMART was 16.4 and 8.8 months, respectively. The incidence of acute grade ≥3 GI toxicity possibly or probably attributed to SMART was 8.8%, including 2 postoperative deaths that were possibly related to SMART in patients who had surgery. There was no acute grade ≥3 GI toxicity definitely related to SMART. One-year overall survival from SMART was 65.0%. CONCLUSIONS: The primary endpoint of this study was met with no acute grade ≥3 GI toxicity definitely attributed to ablative 5-fraction SMART. Although it is unclear whether SMART contributed to postoperative toxicity, we recommend caution when pursuing surgery, especially with vascular resection after SMART. Additional follow-up is ongoing to evaluate late toxicity, quality of life, and long-term efficacy.


Subject(s)
Pancreatic Neoplasms , Radiosurgery , Humans , Aged , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/radiotherapy , Pancreatic Neoplasms/drug therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Prospective Studies , Radiotherapy Planning, Computer-Assisted , Quality of Life , Pancreas , Magnetic Resonance Spectroscopy , Radiosurgery/methods , Pancreatic Neoplasms
11.
Clin Transl Radiat Oncol ; 38: 161-168, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36466748

ABSTRACT

Purpose/Objective: Magnetic resonance-guided radiation therapy (MRgRT) utilization is rapidly expanding worldwide, driven by advanced capabilities including continuous intrafraction visualization, automatic triggered beam delivery, and on-table adaptive replanning (oART). Our objective was to describe patterns of 0.35Tesla(T)-MRgRT (MRIdian) utilization in the United States (US) among early adopters of this novel technology. Materials/Methods: Anonymized administrative data from all US MRIdian treatment systems were extracted for patients completing treatment from 2014 to 2020. Detailed treatment information was available for all MRIdian linear accelerator (linac) systems and some cobalt systems. Results: Seventeen systems at 16 centers delivered 5736 courses and 36,389 fractions (fraction details unavailable for 1223 cobalt courses), of which 21.1% were adapted. Ultra-hypofractionation (UHfx) (1-5 fractions) was used in 70.3% of all courses. At least one adaptive fraction was used for 38.5% of courses (average 1.7 adapted fractions/course), with higher oART use in UHfx dose schedules (47.7% of courses, average 1.9 adapted fractions per course). The most commonly treated organ sites were pancreas (20.7%), liver (16.5%), prostate (12.5%), breast (11.5%), and lung (9.4%). Temporal trends show a compounded annual growth rate (CAGR) of 59.6% in treatment courses delivered, with a dramatic increase in use of UHfx to 84.9% of courses in 2020 and similar increase in use of oART to 51.0% of courses. Conclusions: This is the first comprehensive study reporting patterns of utilization among early adopters of MRIdian in the US. Intrafraction MR image-guidance, advanced motion management, and increasing adoption of adaptive radiation therapy has led to a substantial transition to ultra-hypofractionated regimens. 0.35 T-MRgRT has been predominantly used to treat abdominal and pelvic tumors with increasing use of on-table adaptive replanning, which represents a paradigm shift in radiation therapy.

12.
Int J Radiat Oncol Biol Phys ; 115(1): 214-223, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35878713

ABSTRACT

PURPOSE: Ablative radiation therapy for borderline resectable or locally advanced pancreatic ductal adenocarcinoma (BR/LA-PDAC) may limit concurrent chemotherapy dosing and usually is only safely deliverable to tumors distant from gastrointestinal organs. Magnetic resonance guided radiation therapy may safely permit radiation and chemotherapy dose escalation. METHODS AND MATERIALS: We conducted a single-arm phase I study to determine the maximum tolerated dose of ablative hypofractionated radiation with full-dose gemcitabine/nab-paclitaxel in patients with BR/LA-PDAC. Patients were treated with gemcitabine/nab-paclitaxel (1000/125 mg/m2) x 1c then concurrent gemcitabine/nab-paclitaxel and radiation. Gemcitabine/nab-paclitaxel and radiation doses were escalated per time-to-event continual reassessment method from 40 to 45 Gy 25 fxs with chemotherapy (600-800/75 mg/m2) to 60 to 67.5 Gy/15 fractions and concurrent gemcitabine/nab-paclitaxel (1000/100 mg/m2). The primary endpoint was maximum tolerated dose of radiation as defined by 60-day dose limiting toxicity (DLT). DLT was treatment-related G5, G4 hematologic, or G3 gastrointestinal requiring hospitalization >3 days. Secondary endpoints included resection rates, local progression free survival (LPFS), distant metastasis free survival (DMFS), and overall survival (OS). RESULTS: Thirty patients enrolled (March 2015-February 2019), with 26 evaluable patients (2 progressed before radiation, 1 was determined ineligible for radiation during planning, 1 withdrew consent). One DLT was observed. The DLT rate was 14.1% (3.3%-24.9%) with a maximum tolerated dose of gemcitabine/nab-paclitaxel (1000/100 mg/m2) and 67.5 Gy/15 fractions. At a median follow-up of 40.6 months for living patients the median OS was 14.5 months (95% confidence interval [CI], 10.9-28.2 months). The median OS for patients with Eastern Collaborative Oncology Group 0 and carbohydrate antigen 19-9 <90 were 34.1 (95% CI, 13.6-54.1) and 43.0 (95% CI, 8.0-not reached) months, respectively. Two-year LPFS and DMFS were 85% (95% CI, 63%-94%) and 57% (95% CI, 34%-73%), respectively. CONCLUSIONS: Full-dose gemcitabine/nab-paclitaxel with ablative magnetic resonance guided radiation therapy dosing is safe in patients with BR/LA-PDAC, with promising LPFS and DMFS.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Humans , Adenocarcinoma/radiotherapy , Adenocarcinoma/drug therapy , Albumins , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Gemcitabine , Paclitaxel , Pancreatic Neoplasms/radiotherapy , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms
13.
Front Oncol ; 13: 1298099, 2023.
Article in English | MEDLINE | ID: mdl-38162503

ABSTRACT

Purpose: The total time of radiation treatment delivery for pancreatic cancer patients with daily online adaptive radiation therapy (ART) on an MR-Linac can range from 50 to 90 min. During this period, the target and normal tissues undergo changes due to respiration and physiologic organ motion. We evaluated the dosimetric impact of the intrafraction physiological organ changes. Methods: Ten locally advanced pancreatic cancer patients were treated with 50 Gy in five fractions with intensity-modulated respiratory-gated radiation therapy on a 0.35-T MR-Linac. Patients received both pre- and post-treatment volumetric MRIs for each fraction. Gastrointestinal organs at risk (GI-OARs) were delineated on the pre-treatment MRI during the online ART process and retrospectively on the post-treatment MRI. The treated dose distribution for each adaptive plan was assessed on the post-treatment anatomy. Prescribed dose volume histogram metrics for the scheduled plan on the pre-treatment anatomy, the adapted plan on the pre-treatment anatomy, and the adapted plan on post-treatment anatomy were compared to the OAR-defined criteria for adaptation: the volume of the GI-OAR receiving greater than 33 Gy (V33Gy) should be ≤1 cubic centimeter. Results: Across the 50 adapted plans for the 10 patients studied, 70% were adapted to meet the duodenum constraint, 74% for the stomach, 12% for the colon, and 48% for the small bowel. Owing to intrafraction organ motion, at the time of post-treatment imaging, the adaptive criteria were exceeded for the duodenum in 62% of fractions, the stomach in 36%, the colon in 10%, and the small bowel in 48%. Compared to the scheduled plan, the post-treatment plans showed a decrease in the V33Gy, demonstrating the benefit of plan adaptation for 66% of the fractions for the duodenum, 95% for the stomach, 100% for the colon, and 79% for the small bowel. Conclusion: Post-treatment images demonstrated that over the course of the adaptive plan generation and delivery, the GI-OARs moved from their isotoxic low-dose region and nearer to the dose-escalated high-dose region, exceeding dose-volume constraints. Intrafraction motion can have a significant dosimetric impact; therefore, measures to mitigate this motion are needed. Despite consistent intrafraction motion, plan adaptation still provides a dosimetric benefit.

14.
Int J Radiat Oncol Biol Phys ; 114(5): 950-967, 2022 12 01.
Article in English | MEDLINE | ID: mdl-35901978

ABSTRACT

PURPOSE: Early clinical results on the application of magnetic resonance imaging (MRI) coupled with a linear accelerator to deliver Magnetic Resonance-guided Radiation Therapy (MRgRT) have demonstrated feasibility for safe delivery of stereotactic body radiation therapy in treatment of oligometastatic disease. Here, we set out to review the clinical evidence and challenges associated with MRgRT in this setting. METHODS AND MATERIALS: We performed a systematic review of the literature pertaining to clinical experiences and trials on the use of MRgRT primarily for the treatment of oligometastatic cancers. We reviewed the opportunities and challenges associated with the use of MRgRT. RESULTS: Benefits of MRgRT pertaining to superior soft-tissue contrast, real-time imaging and gating, and online adaptive radiation therapy facilitate safe and effective dose escalation to oligometastatic tumors while simultaneously sparing surrounding healthy tissues. Challenges concerning further need for clinical evidence and technical considerations related to planning, delivery, quality assurance of hypofractionated doses, and safety in the MRI environment must be considered. CONCLUSIONS: The promising early indications of safety and effectiveness of MRgRT for stereotactic body radiation therapy-based treatment of oligometastatic disease in multiple treatment locations should lead to further clinical evidence to demonstrate the benefit of this technology.


Subject(s)
Neoplasms , Radiosurgery , Radiotherapy, Image-Guided , Humans , Radiotherapy, Image-Guided/methods , Particle Accelerators , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy
15.
Dis Colon Rectum ; 65(9): e920, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35671247
16.
Dis Colon Rectum ; 65(2): 198-206, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34990423

ABSTRACT

BACKGROUND: Short-course radiation followed by chemotherapy as total neoadjuvant therapy has been investigated primarily in Europe and Australia with increasing global acceptance. There are limited data on this regimen's use in the United States, however, potentially delaying implementation. OBJECTIVE: This study aimed to compare clinical performance and oncologic outcomes of 2 rectal cancer neoadjuvant treatment modalities: short-course total neoadjuvant therapy versus standard chemoradiation. DESIGN: This is a retrospective cohort study. SETTING: This study was performed at a National Cancer Institute-designated cancer center. PATIENTS: A total of 413 patients had locally advanced rectal cancers diagnosed from June 2009 to May 2018 and received either short-course total neoadjuvant therapy or standard chemoradiation. INTERVENTIONS: There were 187 patients treated with short-course total neoadjuvant therapy (5 × 5 Gy radiation followed by consolidation oxaliplatin-based chemotherapy) compared with 226 chemoradiation recipients (approximately 50.4 Gy radiation in 28 fractions with concurrent fluorouracil equivalent). MAIN OUTCOME MEASURES: Primary end points were tumor downstaging, measured by complete response and "low" neoadjuvant rectal score rates, and progression-free survival. Secondary analyses included treatment characteristics and completion, sphincter preservation, and recurrence rates. RESULTS: Short-course total neoadjuvant therapy was associated with higher rates of complete response (26.2% vs 17.3%; p = 0.03) and "low" neoadjuvant rectal scores (40.1% vs 25.7%; p < 0.01) despite a higher burden of node-positive disease (78.6% vs 68.9%; p = 0.03). Short-course recipients also completed trimodal treatment more frequently (88.4% vs 50.4%; p < 0.01) and had fewer months with temporary stomas (4.8 vs 7.0; p < 0.01). Both regimens achieved comparable local control (local recurrence: 2.7% short-course total neoadjuvant therapy vs 2.2% chemoradiation, p = 0.76) and 2-year progression-free survival (88.2% short-course total neoadjuvant therapy (95% CI, 82.9-93.5) vs 85.6% chemoradiation (95% CI, 80.5-90.7)). LIMITATIONS: Retrospective design, unbalanced disease severity, and variable dosing of neoadjuvant consolidation chemotherapy were limitations of this study. CONCLUSIONS: Short-course total neoadjuvant therapy was associated with improved downstaging and similar progression-free survival compared with chemoradiation. These results were achieved with shortened radiation courses, improved treatment completion, and less time with diverting ostomies. Short-course total neoadjuvant therapy is an optimal regimen for locally advanced rectal cancer. See Video Abstract at http://links.lww.com/DCR/B724.TERAPIA NEOADYUVANTE TOTAL CON RADIACIÓN DE CORTA DURACIÓN: EXPERIENCIA ESTADOUNIDENSE DE UNA TERAPIA NEOADYUVANTE CONTRA EL CÁNCER DE RECTO. ANTECEDENTES: La radiación de corta duración seguida de quimioterapia como terapia neoadyuvante total se ha investigado principalmente en Europa y Australia con una aceptación mundial cada vez mayor. Sin embargo, datos limitados sobre el uso de este régimen en los Estados Unidos, han potencialmente retrasando su implementación. OBJETIVO: Comparar el desempeño clínico y los resultados oncológicos de dos modalidades de tratamiento neoadyuvante del cáncer de recto: terapia neoadyuvante total de corta duración versus quimioradiación. estándar. DISEO: Cohorte retrospectivo. AJUSTE: Centro oncológico designado por el NCI. PACIENTES: Un total de 413 cánceres rectales localmente avanzados diagnosticados entre junio de 2009 y mayo de 2018 que recibieron cualquiera de los regímenes neoadyuvantes. INTERVENCIONES: Hubo 187 pacientes tratados con terapia neoadyuvante total de ciclo corto (radiación 5 × 5 Gy seguida de quimioterapia de consolidación basada en oxaliplatino) en comparación con 226 pacientes de quimiorradiación (aproximadamente 50,4 Gy de radiación en 28 fracciones con equivalente de fluorouracilo concurrente). PRINCIPALES MEDIDAS DE RESULTADO: Los criterios primarios de valoración fueron la disminución del estadio del tumor, medido por la respuesta completa y las tasas de puntuación rectal neoadyuvante "baja", y la supervivencia libre de progresión. Los análisis secundarios incluyeron las características del tratamiento y las tasas de finalización, conservación del esfínter y recurrencia. RESULTADOS: La terapia neoadyuvante total de corta duración, se asoció con tasas más altas de respuesta completa (26,2% versus 17,3%, p = 0,03) y puntuaciones rectales neoadyuvantes "bajas" (40,1% versus 25,7%, p < 0,01) a pesar de una mayor carga de enfermedad con ganglios positivos (78,6% versus 68,9%, p = 0,03). Los pacientes de ciclo corto también completaron el tratamiento trimodal con mayor frecuencia (88,4% versus 50,4%, p < 0,01) y tuvieron menos meses con estomas temporales (4,8 versus 7,0, p < 0,01). Ambos regímenes lograron un control local comparable (recidiva local: 2,7% de SC-TNT versus 2,2% de TRC, p = 0,76) y supervivencia libre de progresión a 2 años (88,2% de SC-TNT [IC: 82,9 - 93,5] versus 85,6% CRT [CI: 80,5 - 90,7]). LIMITACIONES: Diseño retrospectivo, gravedad de la enfermedad desequilibrada y dosificación variable de quimioterapia neoadyuvante de consolidación. CONCLUSIONES: La terapia neoadyuvante total de ciclo corto se asoció con una mejora en la reducción del estadio y una supervivencia libre de progresión similar en comparación con la quimioradiación. Estos resultados se lograron con ciclos de radiación más cortos, tratamientos mejor finalizados y menos tiempo en ostomías de derivación. La terapia neoadyuvante total de corta duración es un régimen óptimo para el cáncer de recto localmente avanzado. Consulte Video Resumen en http://links.lww.com/DCR/B724. (Traducción- Dr. Fidel Ruiz Healy).


Subject(s)
Adenocarcinoma/therapy , Chemoradiotherapy , Neoadjuvant Therapy , Proctectomy , Rectal Neoplasms/therapy , Adenocarcinoma/mortality , Adenocarcinoma/pathology , Aged , Female , Humans , Male , Middle Aged , Neoplasm Staging , Rectal Neoplasms/mortality , Rectal Neoplasms/pathology , Retrospective Studies , Survival Rate , Treatment Outcome
17.
JAMA Netw Open ; 4(11): e2133457, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34748003

ABSTRACT

Importance: Predicting outcomes in patients receiving neoadjuvant therapy for rectal cancer is challenging because of tumor downstaging. Validated clinical calculators that can estimate recurrence-free survival (RFS) and overall survival (OS) among patients with rectal cancer who have received multimodal therapy are needed. Objective: To develop and validate clinical calculators providing estimates of rectal cancer recurrence and survival that are better for individualized decision-making than the American Joint Committee on Cancer (AJCC) staging system or the neoadjuvant rectal (NAR) score. Design, Setting, and Participants: This prognostic study developed risk models, graphically represented as nomograms, for patients with incomplete pathological response using Cox proportional hazards and multivariable regression analyses with restricted cubic splines. Because patients with complete pathological response to neoadjuvant therapy had uniformly favorable outcomes, their predictions were obtained separately. The study included 1400 patients with stage II or III rectal cancer who received treatment with chemotherapy, radiotherapy, and surgery at 2 comprehensive cancer centers (Memorial Sloan Kettering [MSK] Cancer Center and Siteman Cancer Center [SCC]) between January 1, 1998, and December 31, 2017. Patients from the MSK cohort received chemoradiation, surgery, and adjuvant chemotherapy from January 1, 1998, to December 31, 2014; these patients were randomly assigned to either a model training group or an internal validation group. Models were externally validated using data from the SCC cohort, who received either chemoradiation, surgery, and adjuvant chemotherapy (chemoradiotherapy group) or short-course radiotherapy, consolidation chemotherapy, and surgery (total neoadjuvant therapy with short-course radiotherapy group) from January 1, 2009, to December 31, 2017. Data were analyzed from March 1, 2020, to January 10, 2021. Exposures: Chemotherapy, radiotherapy, chemoradiotherapy, and surgery. Main Outcomes and Measures: Recurrence-free survival and OS were the outcome measures, and the discriminatory performance of the clinical calculators was measured with concordance index and calibration plots. The ability of the clinical calculators to predict RFS and OS was compared with that of the AJCC staging system and the NAR score. The models for RFS and OS among patients with incomplete pathological response included postoperative pathological tumor category, number of positive lymph nodes, tumor distance from anal verge, and large- and small-vessel venous and perineural invasion; age was included in the risk model for OS. The final clinical calculators provided RFS and OS estimates derived from Kaplan-Meier curves for patients with complete pathological response and from risk models for patients with incomplete pathological response. Results: Among 1400 total patients with locally advanced rectal cancer, the median age was 57.8 years (range, 18.0-91.9 years), and 863 patients (61.6%) were male, with tumors at a median distance of 6.7 cm (range, 0-15.0 cm) from the anal verge. The MSK cohort comprised 1069 patients; of those, 710 were assigned to the model training group and 359 were assigned to the internal validation group. The SCC cohort comprised 331 patients; of those, 200 were assigned to the chemoradiotherapy group and 131 were assigned to the total neoadjuvant therapy with short-course radiotherapy group. The concordance indices in the MSK validation data set were 0.70 (95% CI, 0.65-0.76) for RFS and 0.73 (95% CI, 0.65-0.80) for OS. In the external SCC data set, the concordance indices in the chemoradiotherapy group were 0.71 (95% CI, 0.62-0.81) for RFS and 0.72 (95% CI, 0.59-0.85) for OS; the concordance indices in the total neoadjuvant therapy with short-course radiotherapy group were 0.62 (95% CI, 0.49-0.75) for RFS and 0.67 (95% CI, 0.46-0.84) for OS. Calibration plots confirmed good agreement between predicted and observed events. These results compared favorably with predictions based on the AJCC staging system (concordance indices for MSK validation: RFS = 0.69 [95% CI, 0.64-0.74]; OS = 0.67 [95% CI, 0.58-0.75]) and the NAR score (concordance indices for MSK validation: RFS = 0.56 [95% CI, 0.50-0.63]; OS = 0.56 [95% CI, 0.46-0.66]). Furthermore, the clinical calculators provided more individualized outcome estimates compared with the categorical schemas (eg, estimated RFS for patients with AJCC stage IIIB disease ranged from 7% to 68%). Conclusions and Relevance: In this prognostic study, clinical calculators were developed and validated; these calculators provided more individualized estimates of the likelihood of RFS and OS than the AJCC staging system or the NAR score among patients with rectal cancer who received multimodal treatment. The calculators were easy to use and applicable to both short- and long-course radiotherapy regimens, and they may be used to inform surveillance strategies and facilitate future clinical trials and statistical power calculations.


Subject(s)
Neoplasm Recurrence, Local/mortality , Neoplasm Recurrence, Local/therapy , Progression-Free Survival , Rectal Neoplasms/mortality , Rectal Neoplasms/therapy , Aged , Cohort Studies , Female , Follow-Up Studies , Humans , Male , Middle Aged , Neoplasm Staging , Prognosis , Risk Factors , Socioeconomic Factors , Survival Rate
19.
Front Oncol ; 11: 628155, 2021.
Article in English | MEDLINE | ID: mdl-34046339

ABSTRACT

INTRODUCTION: Pancreatic adenocarcinoma (PAC) has some of the worst treatment outcomes for any solid tumor. PAC creates substantial difficulty for effective treatment with traditional RT delivery strategies primarily secondary to its location and limited visualization using CT. Several of these challenges are uniquely addressed with MR-guided RT. We sought to summarize and place into context the currently available literature on MR-guided RT specifically for PAC. METHODS: A literature search was conducted to identify manuscript publications since September 2014 that specifically used MR-guided RT for the treatment of PAC. Clinical outcomes of these series are summarized, discussed, and placed into the context of the existing pancreatic literature. Multiple international experts were involved to optimally contextualize these publications. RESULTS: Over 300 manuscripts were reviewed. A total of 6 clinical outcomes publications were identified that have treated patients with PAC using MR guidance. Successes, challenges, and future directions for this technology are evident in these publications. MR-guided RT holds theoretical promise for the treatment of patients with PAC. As with any new technology, immediate or dramatic clinical improvements associated with its use will take time and experience. There remain no prospective trials, currently publications are limited to small retrospective experiences. The current level of evidence for MR guidance in PAC is low and requires significant expansion. Future directions and ongoing studies that are currently open and accruing are identified and reviewed. CONCLUSIONS: The potential promise of MR-guided RT for PAC is highlighted, the challenges associated with this novel therapeutic intervention are also reviewed. Outcomes are very early, and will require continued and long term follow up. MR-guided RT should not be viewed in the same fashion as a novel chemotherapeutic agent for which dosing, administration, and toxicity has been established in earlier phase studies. Instead, it should be viewed as a novel procedural intervention which must be robustly tested, refined and practiced before definitive conclusions on the potential benefits or detriments can be determined. The future of MR-guided RT for PAC is highly promising and the potential implications on PAC are substantial.

20.
Clin Colorectal Cancer ; 20(3): e185-e193, 2021 09.
Article in English | MEDLINE | ID: mdl-34001462

ABSTRACT

PURPOSE: Short-course radiation therapy (SCRT) and nonoperative management are emerging paradigms for rectal cancer treatment. This clinical trial is the first to evaluate SCRT followed by chemotherapy as a nonoperative treatment modality. METHODS: Patients with nonmetastatic rectal adenocarcinoma were treated on the single-arm, Nonoperative Radiation Management of Adenocarcinoma of the Lower Rectum study of SCRT followed by chemotherapy. Patients received 25 Gy in 5 fractions to the pelvis followed by FOLFOX ×8 or CAPOX ×5 cycles. Patients with clinical complete response (cCR) underwent nonoperative surveillance. The primary end point was cCR at 1 year. Secondary end points included safety profile and anorectal function. RESULTS: From June 2016 to March 2019, 19 patients were treated (21% stage I, 32% stage II, and 47% stage III disease). At a median follow-up of 27.7 months for living patients, the 1-year cCR rate was 68%. Eighteen of 19 patients are alive without evidence of disease. Patients with cCR versus without had improved 2-year disease-free survival (93% vs 67%; P = .006), distant metastasis-free survival (100% vs 67%; P = .03), and overall survival (100% vs 67%; P = .03). Involved versus uninvolved circumferential resection margin on magnetic resonance imaging was associated with less initial cCR (40% vs 93%; P = .04). Anorectal function by Functional Assessment of Cancer Therapy-Colorectal cancer score at 1 year was not different than baseline. There were no severe late effects. CONCLUSIONS: Treatment with SCRT and chemotherapy resulted in high cCR rate, intact anorectal function, and no severe late effects. NCT02641691.


Subject(s)
Adenocarcinoma , Rectal Neoplasms , Adenocarcinoma/therapy , Chemoradiotherapy , Humans , Neoadjuvant Therapy , Neoplasm Recurrence, Local , Rectal Neoplasms/therapy , Treatment Outcome , Watchful Waiting
SELECTION OF CITATIONS
SEARCH DETAIL
...