Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Death Dis ; 15(1): 80, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38253602

ABSTRACT

p38 mitogen-activated protein kinases (MAPKs) participate in autophagic signaling; and previous reports suggest that pyridinyl imidazole p38 MAPK inhibitors, including SB203580 and SB202190, induce cell death in some cancer cell-types through unrestrained autophagy. Subsequent studies, however, have suggested that the associated cytoplasmic vacuolation resulted from off-target inhibition of an unidentified enzyme. Herein, we report that SB203580-induced vacuolation is rapid, reversible, and relies on the class III phosphatidylinositol 3-kinase (PIK3C3) complex and the production of phosphatidylinositol 3-phosphate [PI(3)P] but not on autophagy per se. Rather, vacuolation resulted from the accumulation of Rab7 on late endosome and lysosome (LEL) membranes, combined with an osmotic imbalance that triggered severe swelling in these organelles. Inhibition of PIKfyve, the lipid kinase that converts PI(3)P to PI(3,5)P2 on LEL membranes, produced a similar phenotype in cells; therefore, we performed in vitro kinase assays and discovered that both SB203580 and SB202190 directly inhibited recombinant PIKfyve. Cancer cells treated with either drug likewise displayed significant reductions in the endogenous levels of PI(3,5)P2. Despite these results, SB203580-induced vacuolation was not entirely due to off-target inhibition of PIKfyve, as a drug-resistant p38α mutant suppressed vacuolation; and combined genetic deletion of both p38α and p38ß dramatically sensitized cells to established PIKfyve inhibitors, including YM201636 and apilimod. The rate of vacuole dissolution (i.e., LEL fission), following the removal of apilimod, was also significantly reduced in cells treated with BIRB-796, a structurally unrelated p38 MAPK inhibitor. Thus, our studies indicate that pyridinyl imidazole p38 MAPK inhibitors induce cytoplasmic vacuolation through the combined inhibition of both PIKfyve and p38 MAPKs, and more generally, that p38 MAPKs act epistatically to PIKfyve, most likely to promote LEL fission.


Subject(s)
Endosomes , Hydrazones , Lysosomes , Morpholines , Pyrimidines , Phosphatidylinositol Phosphates , Imidazoles/pharmacology
2.
bioRxiv ; 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36993747

ABSTRACT

p38 mitogen-activated protein kinases (MAPKs) regulate early endocytic trafficking, but their effects on late endocytic trafficking remain unclear. Herein, we report that the pyridinyl imidazole p38 MAPK inhibitors, SB203580 and SB202190, induce a rapid but reversible Rab7-dependent accumulation of large cytoplasmic vacuoles. While SB203580 did not induce canonical autophagy, phosphatidylinositol 3-phosphate [PI(3)P] accumulated on vacuole membranes, and inhibition of the class III PI3-kinase (PIK3C3/VPS34) suppressed vacuolation. Ultimately, vacuolation resulted from the fusion of ER/Golgi-derived membrane vesicles with late endosomes and lysosomes (LELs), combined with an osmotic imbalance in LELs that led to severe swelling and a decrease in LEL fission. Since PIKfyve inhibitors induce a similar phenotype by preventing the conversion of PI(3)P to PI(3,5)P2, we performed in vitro kinase assays and found that PIKfyve activity was unexpectedly inhibited by SB203580 and SB202190, corresponding to losses in endogenous PI(3,5)P2 levels in treated cells. However, vacuolation was not entirely due to 'off-target' inhibition of PIKfyve by SB203580, as a drug-resistant p38α mutant suppressed vacuolation. Moreover, genetic deletion of both p38α and p38ß rendered cells dramatically more sensitive to PIKfyve inhibitors, including YM201636 and apilimod. In subsequent 'washout' experiments, the rate of vacuole dissolution upon the removal of apilimod was also significantly reduced in cells treated with BIRB-796, a structurally unrelated p38 MAPK inhibitor. Thus, p38 MAPKs act epistatically to PIKfyve to promote LEL fission; and pyridinyl imidazole p38 MAPK inhibitors induce cytoplasmic vacuolation through the combined inhibition of both PIKfyve and p38 MAPKs.

3.
Cartilage ; 9(4): 438-449, 2018 10.
Article in English | MEDLINE | ID: mdl-28399641

ABSTRACT

Objective To establish whether a novel biomaterial scaffold with tunable degradation profile will aid in cartilage repair of chondral defects versus microfracture alone in vitro and in a rat model in vivo. Design In vitro-Short- and long-term degradation scaffolds were seeded with culture expanded articular chondrocytes or bone marrow mesenchymal stem cells. Cell growth and differentiation were evaluated with cell morphological studies and gene expression studies. In vivo-A microfracture rat model was used in this study to evaluate the repair of cartilage and subchondral bone with the contralateral knee serving as the empty control. The treatment groups include (1) empty osteochondral defect, (2) polycaprolactone copolymer-based polyester polyurethane-urea (PSPU-U) caffold short-term degradative profile, and (3) PSPU-U scaffold long-term degradative profile. After placement of the scaffold, the rats were then allowed unrestricted activity as tolerated, and histological analyses were performed at 4, 8, and 16 weeks. The cartilage defect was measured and compared with the contralateral control side. Results In vitro-Long-term scaffolds showed statistically significant higher levels of aggrecan and type II collagen expression compared with short-term scaffolds. In vivo-Within 16 weeks postimplantation, there was new subchondral bone formation in both scaffolds. Short-term scaffolds had a statistically significant increase in defect filling and better qualitative histologic fill compared to control. Conclusions The PSPU short-term degradation scaffold may aid in cartilage repair by ultimately incorporating the scaffold into the microfracture procedure.


Subject(s)
Cartilage Diseases/surgery , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Tissue Engineering/methods , Tissue Scaffolds , Animals , Cartilage, Articular/cytology , Cartilage, Articular/surgery , Femur , Mesenchymal Stem Cells/metabolism , Rats , Tibia
4.
J Mol Neurosci ; 62(3-4): 309-317, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28616777

ABSTRACT

Oligodendrocytes (OLGs) are the myelinating cells of the central nervous system (CNS), and its proper differentiation is crucial for normal functioning of neurons. Methyl-CpG-binding protein 2 (MeCP2) is a multifunctional methylated DNA binding protein; mutation of which causes Rett syndrome, a severe neurodevelopmental disorder. Previously, we reported that MeCP2 is expressed in all the stages of oligodendrocyte development, and also shown the role of MeCP2 as a transcription regulator of myelin genes in OLGs. The expression and function of MeCP2 phosphorylation at S80 (pS80MeCP2) has been well studied in neurons and astrocytes; however, there is no data so far available in OLGs regarding pS80MeCP2. Certain developmental stimuli such as growth factors and extracellular matrix (ECM) protein play important role in OLG development. In the present study, we have examined the effects of external stimuli (growth factors (GFs) and extracellular matrix (ECMs)) on S80 phosphorylation of MeCP2 in N19 oligodendroglial cells (N19 OLGs). This study provides the first evidence that laminin (LN) differentially regulates the expression of pS80MeCP2 in immature and mature N19 OLGs. Thus, MeCP2 is phosphorylated in a stimulus-dependent manner during oligodendrocyte development, and thereby, it may regulate the oligodendrocyte behavior.


Subject(s)
Laminin/pharmacology , Methyl-CpG-Binding Protein 2/metabolism , Oligodendroglia/metabolism , Protein Processing, Post-Translational , Animals , Cell Line , Methyl-CpG-Binding Protein 2/drug effects , Methyl-CpG-Binding Protein 2/genetics , Mice , Phosphorylation
5.
Cell Mol Neurobiol ; 37(2): 183-194, 2017 Mar.
Article in English | MEDLINE | ID: mdl-26993510

ABSTRACT

Oligodendrocyte progenitor cell (OPC) migration is critical for effective myelination of the central nervous system. Not only during normal myelination but also during remyelination, the growth factors (GFs) and extracellular matrix (ECM) protein affect the OPC migration. Studies showed the altered levels of GFs and ECM in the demyelinating lesions. In our earlier studies, we have shown that the effect of platelet-derived growth factor alpha (PDGF-A) on OPC migration is dose- and time-dependent. In that we have shown that the physiological concentration (1 ng/ml) of PDGF-A was unable to induce OPC migration at transient exposure (30 min). However, the involvement of ECM in the regulation of PDGF-A mediated OPC migration was not clear. In the present study, we have used fibronectin (FN) as ECM. PDGF-A and FN have similar and overlapping intracellular signaling pathways including the extracellular regulated kinases 1 and 2 (ERK1/2). Here we demonstrate how physiological concentration of PDGF-A combines with FN to augment OPC migration in vitro. The present study is first of its kind to show the importance of the synergistic effects of PDGF-A and FN on peripheral recruitment of phosphorylated/activated ERK1/2 (pERK1/2), actin-pERK1/2 co-localization, and filopodia formation, which are essential for the enhanced OPC migration. These findings were further confirmed by ERK1/2 inhibition studies, using the pharmacological inhibitor U0126. An understanding of these complex interactions may lead to additional strategies for transplanting genetically modified OPCs to repair widespread demyelinated lesions.


Subject(s)
Fibronectins/metabolism , MAP Kinase Signaling System/physiology , Oligodendroglia/metabolism , Platelet-Derived Growth Factor/metabolism , Pseudopodia/metabolism , Stem Cells/metabolism , Animals , Butadienes/pharmacology , Cell Movement/drug effects , Cell Movement/physiology , Cells, Cultured , Fibronectins/pharmacology , MAP Kinase Signaling System/drug effects , Nitriles/pharmacology , Oligodendroglia/drug effects , Platelet-Derived Growth Factor/pharmacology , Protein Binding/physiology , Pseudopodia/drug effects , Rats , Stem Cells/drug effects
6.
Mol Neurobiol ; 54(9): 6697-6722, 2017 11.
Article in English | MEDLINE | ID: mdl-27744571

ABSTRACT

Excitotoxicty, a key pathogenic event is characteristic of the onset and development of neurodegeneration. The glutamatergic neurotransmission mediated through different glutamate receptor subtypes plays a pivotal role in the onset of excitotoxicity. The role of NMDA receptor (NMDAR), a glutamate receptor subtype, has been well established in the excitotoxicity pathogenesis. NMDAR overactivation triggers excessive calcium influx resulting in excitotoxic neuronal cell death. In the present study, a series of benzazepine derivatives, with the core structure of 3-methyltetrahydro-3H-benzazepin-2-one, were synthesised in our laboratory and their NMDAR antagonist activity was determined against NMDA-induced excitotoxicity using SH-SY5Y cells. In order to assess the multi-target-directed potential of the synthesised compounds, Aß1-42 aggregation inhibitory activity of the most potent benzazepines was evaluated using thioflavin T (ThT) and Congo red (CR) binding assays as Aß also imparts toxicity, at least in part, through NMDAR overactivation. Furthermore, neuroprotective, free radical scavenging, anti-oxidant and anti-apoptotic activities of the two potential test compounds (7 and 14) were evaluated using primary rat hippocampal neuronal culture against Aß1-42-induced toxicity. Finally, in vivo neuroprotective potential of 7 and 14 was assessed using intracerebroventricular (ICV) rat model of Aß1-42-induced toxicity. All of the synthesised benzazepines have shown significant neuroprotection against NMDA-induced excitotoxicity. The most potent compound (14) showed relatively higher affinity for the glycine binding site as compared with the glutamate binding site of NMDAR in the molecular docking studies. 7 and 14 have been shown experimentally to abrogate Aß1-42 aggregation efficiently. Additionally, 7 and 14 showed significant neuroprotective, free radical scavenging, anti-oxidant and anti-apoptotic properties in different in vitro and in vivo experimental models. Finally, 7 and 14 attenuated Aß1-42-induced tau phosphorylation by abrogating activation of tau kinases, i.e. MAPK and GSK-3ß. Thus, the results revealed multi-target-directed potential of some of the synthesised novel benzazepines against excitotoxicity.


Subject(s)
Benzazepines/administration & dosage , Benzazepines/chemical synthesis , Drug Delivery Systems/methods , Excitatory Amino Acid Antagonists/administration & dosage , Excitatory Amino Acid Antagonists/chemical synthesis , Animals , Benzazepines/metabolism , Cell Line, Tumor , Cells, Cultured , Drug Evaluation, Preclinical/methods , Excitatory Amino Acid Antagonists/metabolism , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Rats , Receptors, Glutamate/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism
7.
J Med Chem ; 59(12): 5823-46, 2016 06 23.
Article in English | MEDLINE | ID: mdl-27253679

ABSTRACT

A novel series of hybrid molecules were designed and synthesized by fusing the pharmacophoric features of cholinesterase inhibitor donepezil and diarylthiazole as potential multitarget-directed ligands for the treatment of Alzheimer's disease (AD). The compounds showed significant in vitro anticholinesterase (anti-ChE) activity, the most potent compound (44) among them showing the highest activity (IC50 value of 0.30 ± 0.01 µM) for AChE and (1.84 ± 0.03 µM) for BuChE. Compound 44 showed mixed inhibition of AChE in the enzyme kinetic studies. Some compounds exhibited moderate to high inhibition of AChE-induced Aß1-42 aggregation and noticeable in vitro antioxidant and antiapoptotic properties. Compound 44 showed significant in vivo anti-ChE and antioxidant activities. Furthermore, compound 44 demonstrated in vivo neuroprotection by decreasing Aß1-42-induced toxicity by attenuating abnormal levels of Aß1-42, p-Tau, cleaved caspase-3, and cleaved PARP proteins. Compound 44 exhibited good oral absorption and was well tolerated up to 2000 mg/kg, po, dose without showing toxic effects.


Subject(s)
Alzheimer Disease/drug therapy , Antioxidants/pharmacology , Cholinesterase Inhibitors/pharmacology , Piperidines/pharmacology , Thiazoles/pharmacology , Acetylcholinesterase/metabolism , Animals , Antioxidants/chemical synthesis , Antioxidants/chemistry , Butyrylcholinesterase/metabolism , Cell Survival/drug effects , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Drug Design , Humans , Male , Mice , Molecular Structure , Piperidines/chemistry , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry , Tumor Cells, Cultured
8.
Neurotox Res ; 29(4): 495-513, 2016 May.
Article in English | MEDLINE | ID: mdl-26797524

ABSTRACT

Previous reports suggest that Alzheimer's disease is protected by cholinesterase inhibitors. We synthesized some isoalloxazine derivatives and evaluated them using in vitro cholinesterase inhibition assay. Two of the compounds (7m and 7q) were figured out as potent cholinesterase inhibitors. They further showed anti-Aß aggregatory activity in the in vitro assay. The current study deals with the evaluation of neuroprotective potentials of the potent compounds (7m and 7q) using different in vitro and in vivo experiments. The compounds were first assessed for their tendency to cross blood-brain barrier using in vitro permeation assay. They were evaluated using scopolamine-induced amnesic mice model. Additionally, ROS scavenging and anti-apoptotic properties of 7m and 7q were established against Aß1-42-induced toxicity in rat hippocampal neuronal cells. 7m and 7q were also evaluated using Aß1-42-induced Alzheimer's rat model. Lastly, their involvement in Wnt/ß-catenin pathway was also demonstrated. The results indicated good CNS penetration for 7m and 7q. The neuroprotective effects of 7m and 7q were evidenced by improved cognitive ability in both scopolamine and Aß1-42-induced Alzheimer's-like condition in rodents. The in vivo results also confirmed their anti-cholinesterase and anti-oxidant potential. Immunoblot results showed that treatment with 7m and 7q decreased Aß1-42, p-tau, cleaved caspase-3, and cleaved PARP levels in Aß1-42-induced Alzheimer's rat brain. Additionally, immunoblot results demonstrated that 7m and 7q activated the Wnt/ß-catenin pathway as evidenced by increased p-GSK-3, ß-catenin, and neuroD1 levels in Aß1-42-induced Alzheimer's rat brain. These findings have shown that isoalloxazine derivatives (7m and 7q) could be the potential leads for developing effective drugs for the treatment of AD.


Subject(s)
Alzheimer Disease/drug therapy , Flavins/pharmacology , Flavins/therapeutic use , Wnt Signaling Pathway/drug effects , beta Catenin/metabolism , Acetylcholinesterase/metabolism , Alzheimer Disease/chemically induced , Amyloid beta-Peptides/toxicity , Animals , Apoptosis/drug effects , Butyrylcholinesterase/metabolism , Catalase/metabolism , Cells, Cultured , Cholinesterase Inhibitors/therapeutic use , Disease Models, Animal , Flavins/chemistry , Male , Maze Learning/drug effects , Mice , Muscarinic Antagonists/toxicity , Neurons/drug effects , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Peptide Fragments/toxicity , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Scopolamine/toxicity
9.
Bioorg Chem ; 61: 7-12, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26042530

ABSTRACT

This article describes discovery of a novel and new class of cholinesterase inhibitors as potential therapeutics for Alzheimer's disease. A series of novel isoalloxazine derivatives were synthesized and biologically evaluated for their potential inhibitory outcome for both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These compounds exhibited high activity against both the enzymes AChE as well as BuChE. Of the synthesized compounds, the most potent isoalloxazine derivatives (7m and 7q) showed IC50 values of 4.72 µM and 5.22 µM respectively against AChE; and, 6.98 µM and 5.29 µM respectively against BuChE. These two compounds were further evaluated for their anti-aggregatory activity for ß-amyloid (Aß) in presence and absence of AChE by performing Thioflavin-T (ThT) assay and Congo red (CR) binding assay. In order to evaluate cytotoxic profile of these two potential compounds, cell viability assay of SH-SY5Y human neuroblastoma cells was performed. Further, to understand the binding behavior of these two compounds with AChE and BuChE enzymes, docking studies have been reported.


Subject(s)
Cholinesterase Inhibitors/chemical synthesis , Flavins/chemistry , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Binding Sites , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Cholinesterase Inhibitors/therapeutic use , Cholinesterase Inhibitors/toxicity , Drug Evaluation, Preclinical , Flavins/therapeutic use , Flavins/toxicity , Humans , Molecular Docking Simulation , Protein Structure, Tertiary , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL