Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Sci Rep ; 11(1): 13993, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34234194

ABSTRACT

Micropatterning of transition metal dichalcogenide (TMDC) ultrathin-films and monolayers has been demonstrated by various multi-step approaches. However, directly achieving a patterned growth of TMDC films is still considered to be challenging. Here, we report a solution-based approach for the synthesis of patterned MoS2 layers by dragging a precursor solution droplet with variable velocities across a substrate. Utilizing the pronounced shearing velocity dependence in a Landau-Levich deposition regime, MoS2 films with a spatially modulated thickness with alternating mono/bi- and few-layer regions are obtained after precursor annealing. Generally, the presented facile methodology allows for the direct preparation of micro-structured functional materials, extendable to other TMDC materials and even van der Waals heterostructures.

2.
PLoS One ; 16(1): e0245390, 2021.
Article in English | MEDLINE | ID: mdl-33434239

ABSTRACT

The formation of molybdenum diselenide (MoSe2) is widely observed at the back-contact interface for copper zinc tin selenide (CZTSe) thin-film solar cells. Depending on individual selenium (Se) supply and thermal conditions for forming CZTSe absorbers on molybdenum (Mo) substrates, the thickness of MoSe2 can vary from a few hundreds of nanometers up to ≈ 1 µm, which is comparable to the commonly adopted thickness of 1 ~ 1.5 µm for CZTSe absorbers. In this study, for controlling the thickness of interfacial MoSe2, thin diffusion barrier layers of silicon oxynitride (SiOxNy) are deposited onto Mo layers prior to the growth of CZTSe absorbers in the fabrication process. As a result, a reduction in the thicknesses of MoSe2 layers is achieved. In terms of energy conversion efficiency (η), CZTSe solar cells grown on Mo/SiOxNy back contacts suffer a deterioration as the SiOxNy layers get thicker. CZTSe solar cells grown on Mo/SiOxNy/Mo back contacts preserve their efficiencies at ≈ 11% with thin 10 nm SiOxNy layers.


Subject(s)
Copper/chemistry , Selenium Compounds/chemistry , Silicon Compounds/chemistry , Solar Energy , Tin/chemistry , Zinc Compounds/chemistry , Adsorption , Molybdenum/chemistry , Selenium/chemistry
3.
RSC Adv ; 9(36): 20857-20864, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-35515521

ABSTRACT

For the fabrication of a kesterite-type CZTSe absorber material, stacked elemental-alloy layers (SEAL) precursor consisting of Cu-Sn alloy and elemental Zn layers offer the possibility of enhanced process control due to their advantages such as improvement of material homogeneity and suppression of the commonly observed Sn loss. In this study, the impact of selenium amounts during the annealing of a SEAL-type precursor with the configuration of Zn/Cu-Sn/Zn was demonstrated. The obtained results demonstrate how the selenium amount can indirectly be used to influence the absorber composition in the described annealing process and its direct impact on the opto-electronic properties of solar cells. This occurs due to the placement of elemental Sn in the vicinity of the sample during annealing that acts as a further source of SnSe2 vapor during the high-temperature stage of the process depending on the degree of selenium excess. The results show that higher selenium amount increases the band gap of kesterite; this is directly accompanied by a shift of the defect activation energies. Optimization of this effect can lead to widening of the space-charge width up to 400 nm, which improves the charge carrier collection. The described optimization strategy leads to device efficiencies above 11%.

4.
RSC Adv ; 9(46): 26850-26855, 2019 Aug 23.
Article in English | MEDLINE | ID: mdl-35528608

ABSTRACT

Molybdenum (Mo) is the most commonly used back-contact material for copper zinc tin selenide (CZTSe)-based thin-film solar cells. For most fabrication methods, an interfacial molybdenum diselenide (MoSe2) layer with an uncontrolled thickness is formed, ranging from a few tens of nm up to ≈1 µm. In order to improve the control of the back-contact interface in CZTSe solar cells, the formation of a MoSe2 layer with a homogeneous and defined thickness is necessary. In this study, we use plasma treatments on the as-grown Mo surface prior to the CZTSe absorber formation, which consists of the deposition of stacked metallic layers and the annealing in selenium (Se) atmosphere. The plasma treatments include the application of a pure argon (Ar) plasma and a mixed argon-nitrogen (Ar-N2) plasma. We observe a clear impact of the Ar plasma treatment on the MoSe2 thickness and interfacial morphology. With the Ar-N2 plasma treatment, a nitrided Mo surface can be obtained. Furthermore, we combine the Ar plasma treatment with the application of titanium nitride (TiN) as back-contact barrier and discuss the obtained results in terms of MoSe2 formation and solar cell performance, thus showing possible directions of back-contact engineering for CZTSe solar cells.

5.
Nanoscale Adv ; 1(7): 2663-2673, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-36132738

ABSTRACT

Ternary metal tin phosphides are promising candidates for electrochemical or catalytic applications. Nevertheless, their synthesis, neither as bulk nor nanomaterials is well investigated in the literature. Here, we describe a general synthetic strategy to convert bimetallic M-Sn (M = Ni, Co, and Fe) nanoparticles to ternary metal phosphides by decomposition of tributylphosphine at 300 °C. At high phosphorus concentrations, Ni3Sn4 nanoparticles convert to hybrid structured Ni2SnP and ß-Sn. The CoSn2 and FeSn2 nanoparticles undergo a phosphorization, too and form hybrid nanocrystals reported here for the first time, containing ternary or binary phosphides. We identified the crystal structure of the nanoparticles via XRD and HRTEM measurements using the diffraction data given for Ni2SnP in literature. We were able to locate the Ni2SnP and ß-Sn crystal structure within the nanoparticles to demonstrate the phase composition of the nanoparticles. By transferring the synthesis to cobalt and iron, we obtained nanoparticles exhibiting similar hybrid structures and ternary element compositions for Co-Sn-P and binary Fe-P and FeSn2 compositions. In the last step, we used the given information to propose a conversion mechanism from the binary M-Sn nanoparticles through phosphorization.

6.
ACS Omega ; 3(12): 16924-16933, 2018 Dec 31.
Article in English | MEDLINE | ID: mdl-31458316

ABSTRACT

Synthesis of most tin-based bimetallic nanoparticles is a challenging task because of the differences in the redox potential and the melting point between both components. This article presents a co-reduction synthesis of monoclinic Ni3Sn4 nanoparticles. Varying time and temperature gives the possibility to control the size of the nanoparticles in the range of 4-12 nm. The products were characterized by X-ray diffraction, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and energy-dispersive X-ray spectroscopy measurements. Although the synthesis was conducted entirely oxygen free, the postsynthetic treatment undertaken under air leads to the formation of an amorphous oxide shell. The oxide shell consists of an outer tin-rich region and a nickel-rich region at the interface to the metallic Ni3Sn4 core. On the basis of the investigation of the particles at different stages of the synthesis, we propose a growth mechanism for the Ni3Sn4 nanocrystals. These results can be a guidepost for the synthesis of other tin-based bimetallic nanoparticles.

7.
RSC Adv ; 9(1): 107-113, 2018 Dec 19.
Article in English | MEDLINE | ID: mdl-35521563

ABSTRACT

In this work a vapor-phase-assisted approach for the synthesis of monolayer MoS2 is demonstrated, based on the sulfurization of thin MoO3-x precursor films in an H2S atmosphere. We discuss the co-existence of various possible growth mechanisms, involving solid-gas and vapor-gas reactions. Different sequences were applied in order to control the growth mechanism and to obtain monolayer films. These variations include the sample temperature and a time delay for the injection of H2S into the reaction chamber. The optimized combination allows for tuning the process route towards the potentially more favorable vapor-gas reactions, leading to an improved material distribution on the substrate surface. Raman and photoluminescence (PL) spectroscopy confirm the formation of ultrathin MoS2 films on SiO2/Si substrates with a narrow thickness distribution in the monolayer range on length scales of a few millimeters. Best results are achieved in a temperature range of 950-1000 °C showing improved uniformity in terms of Raman and PL line shapes. The obtained films exhibit a PL yield similar to mechanically exfoliated monolayer flakes, demonstrating the high optical quality of the prepared layers.

8.
Phys Chem Chem Phys ; 19(21): 13767-13777, 2017 May 31.
Article in English | MEDLINE | ID: mdl-28504292

ABSTRACT

Solid oxide fuel cells (SOFCs) are electrochemical conversion devices, which essentially consist of two porous electrodes separated by a dense, oxide ion conducting electrolyte. The performance and the durability of SOFCs strongly depend on the electrode microstructure. In this paper, the impact of a relatively long exposure time (up to 20 000 h) under realistic operation terms (temperature (T) = 850 °C, current density (J) = 190-250 mA cm-2) in the kinetics of microstructural degradation are investigated for porous nickel (Ni)/ceria gadolinium oxide (CGO) anodes, to understand the microstructural evolution in SOFC cermet anodes. A combined system of Focused Ion Beam (FIB) and Scanning Electron Microscope (SEM) tomography was used to analyze various anode microstructures aged during different operating times (2500 h, 15 000 h and 20 000 h). The methodologies of image acquisition as well as the segmentation and the object recognition were improved, offering a reliable quantification of Ni-grain growth, connectivity, tortuosity factor and triple phase boundary length (TPBL). The representative volume element (RVE) was also studied, and its dependence on aging time was confirmed. To construct a volume that can be accurate and representative for the whole sample, the necessary corresponding 3D reconstruction size was adjusted by increasing operating time, in order to suppress the influence of microstructure variation caused by Ni and CGO agglomeration. Statistically significant 3D microstructural changes were observed in the anode by increasing the operating time, including nickel particle size distribution, changes in connectivity of the ceramic part (CGO) and a significant decrease of contiguous triple phase boundary densities. Additional qualitative observations were done in order to gain a complete insight of the degradation phenomena in nickel based cermet anodes.

9.
Opt Express ; 25(5): 5327-5340, 2017 Mar 06.
Article in English | MEDLINE | ID: mdl-28380795

ABSTRACT

We apply spectroscopic ellipsometry (SE) to identify secondary phases in Cu2ZnSnSe4 (CZTSe) absorbers and to investigate the optical properties of CZTSe. A detailed optical model is used to extract the optical parameters, such as refractive index and extinction coefficient in order to extrapolate the band gap values of CZTSe samples, and to obtain information about the presence of secondary phases at the front and back sides of the samples. We show that SE can be used as a non-destructive method for detection of the secondary phases ZnSe and MoSe2 and to extrapolate the band gap values of CZTSe phase.

10.
ACS Appl Mater Interfaces ; 9(7): 6228-6236, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-28139915

ABSTRACT

We investigated the influence of molecular packing on the optical and electrical properties of the liquid crystalline dye 4,7-bis[5-(2-fluoro-4-pentyl-phenyl)-2-thienyl]-2,1,3-benzothiadiazole (FPPTB). FPPTB is crystalline at room temperature, exhibits a nematic phase at temperatures above 149 °C and is in an isotropic melt at temperatures above 230 °C. Solution processed FPPTB films were subject to thermal annealing through these phase transition temperatures and characterized with X-ray diffraction and polarized optical microscopy. Cooling FPPTB films from the nematic and isotropic phases increased crystal domain size, but also induced local structural variations in the molecular packing of crystalline FPPTB. The decrease in long-range order was correlated with an increase in short-range π-π interactions, leading to changes in molecular aggregation which persisted even when the FPPTB films were cooled to room temperature. Annealing-induced changes in molecular aggregation were confirmed with optical spectroscopy. The carrier mobility in FPPTB films increased over 2 orders of magnitude from (2.2 ± 0.4) × 10-5 cm2 V-1 s-1 in as-spun films to µ = (5.0 ± 0.8) × 10-3 cm2 V-1 s-1 in films cooled from the isotropic melt. We discuss the relationship between thermal stability and high carrier mobility values in terms of the interplay between long-range molecular order and increased π-π interactions between molecular pairs in the FPPTB film.

11.
Langmuir ; 32(33): 8533-42, 2016 08 23.
Article in English | MEDLINE | ID: mdl-27480642

ABSTRACT

As a step toward the realization of neuroprosthetics for vision restoration, we follow an electrophysiological patch-clamp approach to study the fundamental photoelectrical stimulation mechanism of neuronal model cells by an organic semiconductor-electrolyte interface. Our photoactive layer consisting of an anilino-squaraine donor blended with a fullerene acceptor is supporting the growth of the neuronal model cell line (N2A cells) without an adhesion layer on it and is not impairing cell viability. The transient photocurrent signal upon illumination from the semiconductor-electrolyte layer is able to trigger a passive response of the neuronal cells under physiological conditions via a capacitive coupling mechanism. We study the dynamics of the capacitive transmembrane currents by patch-clamp recordings and compare them to the dynamics of the photocurrent signal and its spectral responsivity. Furthermore, we characterize the morphology of the semiconductor-electrolyte interface by atomic force microscopy and study the stability of the interface in dark and under illuminated conditions.


Subject(s)
Electrolytes/chemistry , Light , Membrane Potentials , Neurons/metabolism , Semiconductors , Aniline Compounds/chemistry , Animals , Cell Line, Tumor , Cell Survival , Cyclobutanes/chemistry , Electric Stimulation , Fullerenes/chemistry , Mice , Neurons/cytology , Phenols/chemistry
12.
Phys Chem Chem Phys ; 18(24): 16258-65, 2016 Jun 28.
Article in English | MEDLINE | ID: mdl-27250665

ABSTRACT

Heterojunction solar cells based on colloidal nanocrystals (NCs) have shown remarkable improvements in performance in the last decade, but this progress is limited to merely two materials, PbS and PbSe. However, solar cells based on other material systems such as copper-based compounds show lower power conversion efficiencies and much less effort has been made to develop a better understanding of factors limiting their performance. Here, we study charge carrier loss mechanisms in solution-processed CuInS2/ZnO NC solar cells by combining steady-state measurements with transient photocurrent and photovoltage measurements. We demonstrate the presence of an extraction barrier at the CuInS2/ZnO interface, which can be reduced upon illumination with UV light. However, trap-assisted recombination in the CuInS2 layer is shown to be the dominant decay process in these devices.

13.
Phys Chem Chem Phys ; 17(42): 28186-92, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-25820837

ABSTRACT

Bimetallic PtSn nanoparticles (NPs) of well-defined size and metal composition were prepared by means of colloidal methods. The mean particle diameter was about 2 nm for all samples irrespective of the Pt/Sn-ratio, which enables a systematic study of the influence of the composition on the catalytic properties while excluding particle size effects. The hydrogenation of crotonaldehyde was investigated as a reaction for which chemoselectivity is known to be a challenging task. Already very low atomic Sn contents (≈10%) were found to lead to a significantly improved activity which may be attributed to an electronic effect of Sn on Pt. For further increasing tin contents the activity decreased gradually. This trend was accompanied by a steady increase in selectivity towards the desired product (crotylalcohol). The results show that the highest crotylalcohol time yields can be obtained by using catalysts with an atomic Sn content of approximately 23%. In contrast, maximum crotylalcohol selectivities are achieved by using catalysts with a high tin content (>50%).


Subject(s)
Aldehydes/chemistry , Colloids/chemistry , Metal Nanoparticles/chemistry , Platinum/chemistry , Tin/analysis , Tin/chemistry , Catalysis , Hydrogen/chemistry
14.
Beilstein J Nanotechnol ; 6: 47-59, 2015.
Article in English | MEDLINE | ID: mdl-25671151

ABSTRACT

Manganese oxides are one of the most important groups of materials in energy storage science. In order to fully leverage their application potential, precise control of their properties such as particle size, surface area and Mn (x) (+) oxidation state is required. Here, Mn3O4 and Mn5O8 nanoparticles as well as mesoporous α-Mn2O3 particles were synthesized by calcination of Mn(II) glycolate nanoparticles obtained through an economical route based on a polyol synthesis. The preparation of the different manganese oxides via one route facilitates assigning actual structure-property relationships. The oxidation process related to the different MnO x species was observed by in situ X-ray diffraction (XRD) measurements showing time- and temperature-dependent phase transformations occurring during oxidation of the Mn(II) glycolate precursor to α-Mn2O3 via Mn3O4 and Mn5O8 in O2 atmosphere. Detailed structural and morphological investigations using transmission electron microscopy (TEM) and powder XRD revealed the dependence of the lattice constants and particle sizes of the MnO x species on the calcination temperature and the presence of an oxidizing or neutral atmosphere. Furthermore, to demonstrate the application potential of the synthesized MnO x species, we studied their catalytic activity for the oxygen reduction reaction in aprotic media. Linear sweep voltammetry revealed the best performance for the mesoporous α-Mn2O3 species.

15.
ACS Appl Mater Interfaces ; 7(1): 287-300, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25495167

ABSTRACT

With the use of two transparent electrodes, organic polymer-fullerene solar cells are semitransparent and may be combined to parallel-connected multijunction devices or used for innovative applications like power-generating windows. A challenging issue is the optimization of the electrodes, to combine high transparency with adequate electric properties. In the present work, we study the potential of sputter-deposited aluminum-doped zinc oxide as an alternative to the widely used but relatively expensive indium tin oxide (ITO) as cathode material in semitransparent polymer-fullerene solar cells. Concerning the anode, we utilized an insulator-metal-insulator structure based on ultrathin Au films embedded between two evaporated MoO3 layers, with the outer MoO3 film (capping layer) serving as a light coupling layer. The performance of the ITO-free semitransparent polymer-fullerene solar cells was systematically studied as dependent on the thickness of the capping layer and the active layer as well as the illumination direction. These variations were found to have strong impact on the obtained photocurrent densities. We performed optical simulations of the electric field distribution within the devices using the transfer-matrix method, to analyze the origin of the current density variations in detail and provide deep insight into the device physics. With the conventional absorber materials studied here, optimized ITO-free and semitransparent devices reached 2.0% power conversion efficiency and a maximum optical transmission of 60%, with the device concept being potentially transferable to other absorber materials.

16.
ACS Appl Mater Interfaces ; 6(22): 20535-43, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25347208

ABSTRACT

CuInS2 nanorods and networks are interesting candidates for applications requiring efficient charge transport, such as solar energy conversion, because of the increased electrical conductivity in elongated or interconnected nanocrystals, compared to isolated, quasi-spherical ones. However, little is known about the growth mechanisms involved in the formation of this kind of nanostructures, yet. Here, CuInS2 nanorods and networks were synthesized through a facile low-cost and phosphine-free method. Copper and indium sources were added together in the presence of oleylamine and oleic acid. Changing the amount of oleic acid present in the reaction solution influenced the reactivity of the monomers, and consequently, the size of copper sulfide seeds formed in situ after the injection of tert-dodecanethiol, serving as the source of sulfur. Two different growth mechanisms of CuInS2 nanorods were observed, depending on the size of the copper sulfide seeds. Larger seeds (8 nm), which were generated with relatively small amounts of oleic acid, resulted in the formation of hybrid copper sulfide-copper indium disulfide nanocrystals as intermediates in the growth process of the nanorods, while smaller seeds (4 nm) obtained with relatively large amounts of oleic acid were gradually converted to copper indium sulfide nanorods. At longer reaction times, these nanorods formed network structures. The reaction between oleylamine and oleic acid at high temperature turned out to be the crucial factor to induce the attachment of nanorods to multipods and networks.

17.
Nanotechnology ; 25(35): 355401, 2014 Sep 05.
Article in English | MEDLINE | ID: mdl-25116171

ABSTRACT

Tin is able to lithiate and delithiate reversibly with a high theoretical specific capacity, which makes it a promising candidate to supersede graphite as the state-of-the-art negative electrode material in lithium ion battery technology. Nevertheless, it still suffers from poor cycling stability and high irreversible capacities. In this contribution, we show the synthesis of three different nano-sized core/shell-type particles with crystalline tin cores and different amorphous surface shells consisting of SnOx and organic polymers. The spherical size and the surface shell can be tailored by adjusting the synthesis temperature and the polymer reagents in the synthesis, respectively. We determine the influence of the surface modifications with respect to the electrochemical performance and characterize the morphology, structure, and thermal properties of the nano-sized tin particles by means of high-resolution transmission electron microscopy, x-ray diffraction, and thermogravimetric analysis. The electrochemical performance is investigated by constant current charge/discharge cycling as well as cyclic voltammetry.

18.
Phys Chem Chem Phys ; 16(12): 5747-54, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24531698

ABSTRACT

Naphthyl end-capped oligothiophenes are a class of materials well suited for high-performance organics based devices. The formation of nanofibers on muscovite mica from 2,5-bis(naphth-2-yl)thiophene (NaT), 5,5'-bis(naphth-2-yl)-2,2'-bithiophene (NaT2), and 5,5''-bis(naphth-2-yl)-2,2':5',2''-terthiophene (NaT3) as well as of the methoxy-functionalized variants MONaT, MONaT2, and MONaT3 is investigated via atomic force microscopy, X-ray diffraction, polarized fluorescence microscopy, and fluorescence spectroscopy. From polarized fluorescence microscopy spatially resolved molecular orientations are deduced revealing a profound anisotropy. Fibers from lying molecules grow along distinct substrate directions. Methoxy-functionalization substantially increases the crystallization into aligned fibers. In air Ostwald ripening is observed. The morphological variations of the aggregates result in specific optical signatures, disclosed by temperature dependent and spatially resolved fluorescence spectra.

19.
Nanotechnology ; 25(3): 035602, 2014 Jan 24.
Article in English | MEDLINE | ID: mdl-24356510

ABSTRACT

We observe the formation of thin films of fibre-like aggregates from the prototypical organic semiconductor molecule para-hexaphenylene (p-6P) on graphite thin flakes and on monolayer graphene. Using atomic force microscopy, scanning electron microscopy, x-ray diffraction, polarized fluorescence microscopy, and bireflectance microscopy, the molecular orientations on the surface are deduced and correlated to both the morphology as well as to the high-symmetry directions of the graphitic surface: the molecules align with their long axis at ±11° with respect to a high-symmetry direction. The results show that the graphene surface can be used as a growth substrate to direct the self-assembly of organic molecular thin films and nanofibres, both with and without lithographical processing.

20.
Phys Chem Chem Phys ; 14(33): 11706-14, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-22829060

ABSTRACT

Nearly monodisperse lead chalcogenide (PbE, E = S, Se, or Te) semiconductor quantum dots of controllable shape have been produced via a novel synthesis which includes the occurrence of in situ formed Pb(0) particles. Tunable size and shape are achieved through appropriate choice of the precursor type and the stabilizer. As precursor, we use, on the one hand, lead oxide or lead acetate, on the other hand, tellurium, selenium, or sulfur powder dissolved in trioctylphosphine (TOP), tributylphosphine (TBP), or 1-octadecene (ODE). Oleic acid (OA) and various amines, as well as TOP and TBP are used for stabilization. With respect to possible application in hybrid solar cells, the surface of as-synthesized spherical PbSe nanocrystals was investigated by nuclear magnetic resonance (NMR), mass spectrometry (MS) and thermogravimetric analysis (TGA). As an important result, it was found that the surface is not mostly covered by oleic acid after synthesis, but by a phosphorus compound. We also applied a ligand exchange procedure with hexylamine and found evidence for the successful attachment of hexylamine to the nanocrystal surface. Additionally, charge separation between these nanoparticles and the conjugated polymer poly(3-hexylthiophene) (P3HT) is studied by electron spin resonance and photoinduced absorption spectroscopy. The spectra obtained suggest that charges can be produced successfully by photoinduced charge transfer.

SELECTION OF CITATIONS
SEARCH DETAIL
...