Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Clin Immunol ; 187: 46-49, 2018 02.
Article in English | MEDLINE | ID: mdl-29031829

ABSTRACT

Although inflammasome plays a well-known role in animal models of renal injury, limited studies in humans are available, and its participation in diabetic kidney disease (DKD) remains unknown. Aim of this study was to elucidate the contribution of inflammasome genetics in the development of DKD in type-1 diabetes (T1D). The association of functional variants in inflammasome genes with DKD was assessed by multivariate analysis in a retrospective and in a prospective cohort. NLRP1 rs2670660 and rs11651270 polymorphisms were significantly associated with a decrease risk to develop DKD (padj<0.01), and rs11651270 also with a lower risk of new renal events during follow-up (padj=0.01). Supporting these findings, diabetes metabolites (glycated albumin and high glucose) were able to modulate NLRP1 expression. This study is the first to suggest a protective role of NLRP1 in DKD, highlighting an emerging role of NLRP1 as a homeostatic factor against metabolic stress.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics , Diabetes Mellitus, Type 1/metabolism , Diabetic Nephropathies/genetics , Adult , Blood Glucose/metabolism , Diabetes Mellitus, Type 1/complications , Diabetic Nephropathies/etiology , Female , Gain of Function Mutation , Genetic Predisposition to Disease , Glycation End Products, Advanced , Humans , Inflammasomes/genetics , Male , Middle Aged , Multivariate Analysis , NLR Proteins , Polymorphism, Single Nucleotide , Prospective Studies , Retrospective Studies , Serum Albumin/metabolism , Stress, Physiological , Young Adult , Glycated Serum Albumin
2.
Gene ; 568(1): 50-4, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-25965561

ABSTRACT

BACKGROUND: A functional variant in the promoter region of the gene encoding tumor necrosis factor (TNF; rs1800629, -308G>A) showed to confer susceptibility to T1D. However, TNF rs1800629 was found, in several populations, to be in linkage disequilibrium with HLA susceptibility haplotypes to T1D. We evaluated the association of TNF rs1800629 with T1D in a cohort of Brazilian subjects, and assessed the impact of HLA susceptibility haplotypes in this association. METHODS: 659 subjects with T1D and 539 control subjects were genotyped for TNF-308G>A variant. HLA-DRB1 and HLA-DQB1 genes were genotyped in a subset of 313 subjects with T1D and 139 control subjects. RESULTS: Associations with T1D were observed for the A-allele of rs1800629 (OR 1.69, 95% CI 1.33-2.15, p<0.0001, in a codominant model) and for 3 HLA haplotypes: DRB1*03:01-DQB1*02:01 (OR 5.37, 95% CI 3.23-8.59, p<0.0001), DRB1*04:01-DQB1*03:02 (OR 2.95, 95% CI 1.21-7.21, p=0.01) and DRB1*04:02-DQB1*03:02 (OR 2.14, 95% CI 1.02-4.50, p=0.04). Linkage disequilibrium was observed between TNF rs1800629 and HLA-DRB1 and HLA-DQB1 alleles. In a stepwise regression analysis HLA haplotypes, but not TNF rs1800629, remained independently associated with T1D. CONCLUSION: Our results do not support an independent effect of allelic variations of TNF in the genetic susceptibility to T1D.


Subject(s)
Diabetes Mellitus, Type 1/genetics , HLA-DQ beta-Chains/genetics , HLA-DRB1 Chains/genetics , Tumor Necrosis Factor-alpha/genetics , Adult , Brazil , Case-Control Studies , Female , Genes, Dominant , Genetic Association Studies , Genetic Predisposition to Disease , Haplotypes , Humans , Linkage Disequilibrium , Male , Middle Aged , Polymorphism, Single Nucleotide , Young Adult
3.
BMC Med Genet ; 12: 129, 2011 Sep 30.
Article in English | MEDLINE | ID: mdl-21962117

ABSTRACT

BACKGROUND: Oxidative stress is recognized as a major pathogenic factor of cellular damage caused by hyperglycemia. NOX/NADPH oxidases generate reactive oxygen species and NOX1, NOX2 and NOX4 isoforms are expressed in kidney and require association with subunit p22phox (encoded by the CYBA gene). Increased expression of p22phox was described in animal models of diabetic nephropathy. In the opposite direction, glutathione is one of the main endogenous antioxidants whose plasmatic concentrations were reported to be reduced in diabetes patients. The aim of the present investigation was to test whether functional single nucleotide polymorphisms (SNPs) in genes involved in the generation of NADPH-dependent O2•⁻ (-675 T → A in CYBA, unregistered) and in glutathione metabolism (-129 C → T in GCLC [rs17883901] and -65 T → C in GPX3 [rs8177412]) confer susceptibility to renal disease in type 1 diabetes patients. METHODS: 401 patients were sorted into two groups according to the presence (n = 104) or absence (n = 196) of overt diabetic nephropathy or according to glomerular filtration rate (GFR) estimated by Modification of Diet in Renal Disease (MDRD) equation: ≥ 60 mL (n = 265) or < 60 mL/min/1.73 m² (n = 136) and were genotyped. RESULTS: No differences were found in the frequency of genotypes between diabetic and non-diabetic subjects. The frequency of GFR < 60 mL/min was significantly lower in the group of patients carrying CYBA genotypes T/A+A/A (18.7%) than in the group carrying the T/T genotype (35.3%) (P = 0.0143) and the frequency of GFR < 60 mL/min was significantly higher in the group of patients carrying GCLC genotypes C/T+T/T (47.1%) than in the group carrying the C/C genotype (31.1%) (p = 0.0082). Logistic regression analysis identified the presence of at least one A allele of the CYBA SNP as an independent protection factor against decreased GFR (OR = 0.38, CI95% 0.14-0.88, p = 0.0354) and the presence of at least one T allele of the GCLC rs17883901 SNP as an independent risk factor for decreased GFR (OR = 2.40, CI95% 1.27-4.56, p = 0.0068). CONCLUSIONS: The functional SNPs CYBA -675 T → A and GCLC rs17883901, probably associated with cellular redox imbalances, modulate the risk for renal disease in the studied population of type 1 diabetes patients and require validation in additional cohorts.


Subject(s)
Diabetes Mellitus, Type 1/genetics , Diabetic Nephropathies/genetics , Glutamate-Cysteine Ligase/genetics , Glutathione Peroxidase/genetics , NADPH Oxidases/genetics , Adult , Case-Control Studies , Catalytic Domain/genetics , Female , Genetic Predisposition to Disease , Genotype , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL