Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38675427

ABSTRACT

Cannabis contains over 500 different compounds, including cannabinoids, terpenoids, and flavonoids. Cannabidiol (CBD) is a non-psychoactive constituent, whereas beta-caryophyllene (BCP) is one of most the well-known terpenoids of Cannabis sativa. In recent years, there has been an emerging idea that the beneficial activities of these compounds are greater when they are combined. The aim of this study was to evaluate the anti-inflammatory effect of CBD and BCP using the in vitro model of lipopolysaccharide (LPS)-stimulated human keratinocytes (HaCaT) cells. The vitality of the cells was quantified using LDH and MTT assays. The levels of the following pro-inflammatory proteins and genes were quantified: IL-1ß, COX-2, and phospho-NF-κB p65 (p-p65) through Western blotting (WB) and interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNFα) through quantitative real-time polymerase chain reaction (RT-qPCR). When present in the incubation medium, CBD and BCP reduced the increased levels of pro-inflammatory proteins (IL-1ß, COX-2, and p-NF-kB) induced by LPS. The anti-inflammatory effects of CBD were blocked by a PPARγ antagonist, whereas a CB2 antagonist was able to revert the effects of BCP. Selected concentrations of CBD and BCP were able to revert the increases in the expression of pro-inflammatory genes (IL-1ß, IL-6, and TNFα), and these effects were significant when the drugs were used in combination. Our results suggest that CBD and BCP work in concert to produce a major anti-inflammatory effect with good safety profiles.

3.
Antioxidants (Basel) ; 12(6)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37371936

ABSTRACT

Rheumatoid arthritis is an autoimmune disorder that causes chronic joint pain, swelling, and movement impairment, resulting from prolonged inflammation-induced cartilage and bone degradation. The pathogenesis of RA, which is still unclear, makes diagnosis and treatment difficult and calls for new therapeutic strategies to cure the disease. Recent research has identified FPRs as a promising druggable target, with AMC3, a novel agonist, showing preclinical efficacy in vitro and in vivo. In vitro, AMC3 (1-30 µM) exhibited significant antioxidant effects in IL-1ß (10 ng/mL)-treated chondrocytes for 24 h. AMC3 displayed a protective effect by downregulating the mRNA expression of several pro-inflammatory and pro-algic genes (iNOS, COX-2, and VEGF-A), while upregulating genes essential for structural integrity (MMP-13, ADAMTS-4, and COLIAI). In vivo, AMC3 (10 mg kg-1) prevented hypersensitivity and restored postural balance in CFA-injected rats after 14 days. AMC3 attenuated joint alterations, reduced joint inflammatory infiltrate, pannus formation, and cartilage erosion. Chronic AMC3 administration reduced transcriptional changes of genes causing excitotoxicity and pain (EAATs and CCL2) and prevented morphological changes in astrocytes, including cell body hypertrophy, processes length, and thickness, caused by CFA in the spinal cord. This study demonstrates the usefulness of AMC3 and establishes the groundwork for further research.

4.
Neurobiol Dis ; 168: 105716, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35367629

ABSTRACT

The distinction between glial painful and protective pathways is unclear and the possibility to finely modulate the system is lacking. Focusing on painful neuropathies, we studied the role of interleukin 1α (IL-1α), an alarmin belonging to the larger family of damage-associated molecular patterns endogenously secreted to restore homeostasis. The treatment of rat primary neurons with increasing doses of the neurotoxic anticancer drug oxaliplatin (0.3-100µM, 48 h) induced the release of IL-1α. The knockdown of the alarmin in neurons leads to their higher mortality when co-cultured with astrocytes. This toxicity was related to increased extracellular ATP and decreased release of transforming growth factor ß1, mostly produced by astrocytes. In a rat model of neuropathy induced by oxaliplatin, the intrathecal treatment with IL-1α was able to reduce mechanical and thermal hypersensitivity both after acute injection (100 ng and 300 ng) and continuous infusion (100 and 300 ng/die-1). Ex vivo analysis on spinal purified astrocyte processes (gliosomes) and nerve terminals (synaptosomes) revealed the property of IL-1α to reduce the endogenous glutamate release induced by oxaliplatin. This protective effect paralleled with an increased number of GFAP-positive cells in the spinal cord, suggesting the ability of IL-1α to evoke a positive, conservative astrocyte phenotype. Endogenous IL-1α induced protective signals in the cross-talk between neurons and astrocytes. Exogenously administered in rats, IL-1α prevented neuropathic pain in the presence of spinal glutamate decrease and astrocyte activation.


Subject(s)
Antineoplastic Agents , Neuralgia , Alarmins/adverse effects , Alarmins/metabolism , Animals , Antineoplastic Agents/adverse effects , Astrocytes/metabolism , Glutamic Acid/metabolism , Hyperalgesia/metabolism , Interleukin-1alpha/adverse effects , Interleukin-1alpha/metabolism , Neuralgia/metabolism , Neurons/metabolism , Oxaliplatin/toxicity , Rats , Rats, Sprague-Dawley , Spinal Cord/metabolism
5.
Foods ; 11(4)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35206057

ABSTRACT

Most therapies used in patients affected by inflammatory bowel diseases are ineffective in preventing the development of chronic visceral hypersensitivity, mainly due to inflammation-induced enteric neuroplasticity. Glucosinolates, secondary metabolites mainly of Brassicaceae with anti-inflammatory and neuroprotective properties, are effective in treating both neuropathic and arthritis pain through H2S release and Kv7 potassium channel activation. The aim of this work was to investigate the protective and anti-hyperalgesic efficacy of a defatted seed meal from Eruca sativa Mill. (Brassicaceae), rich in glucosinolates, in a rat model of colitis induced by 2,4-dinitrobenzene sulfonic acid (DNBS). The mechanisms of action were also investigated. Visceral pain was assessed by measuring the abdominal response to colorectal distension. Fifteen days after colitis induction, the acute administration of E. sativa defatted seed meal (0.1-1 g kg-1 p.o.) dose-dependently relieved pain. This effect was hampered by co-administering an H2S scavenger or a selective Kv7 blocker. Administering E. sativa (1 g kg-1) for 14 days, starting after DNBS injection, contributed to counteracting visceral pain persistence in the post-inflammatory phase of colitis by promoting colon healing from the damage and reducing enteric gliosis. E. sativa defatted seed meal might be employed as a nutraceutical tool for supporting abdominal pain relief in patients.

6.
Biomed Pharmacother ; 148: 112693, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35149388

ABSTRACT

The term tendinopathy indicates a wide spectrum of conditions characterized by alterations in tendon tissue homeostatic response and damage to the extracellular matrix. The current pharmacological approach involves the use of nonsteroidal anti-inflammatory drugs and corticosteroids often with unsatisfactory results, making essential the identification of new treatments. In this study, the pro-regenerative and protective effects of an aqueous fibroin solution (0.5-500 µg/mL) against glucose oxidase (GOx)-induced damage in rat tenocytes were investigated. Then, fibroin anti-hyperalgesic and protective actions were evaluated in two models of tendinopathy induced in rats by collagenase or carrageenan injection, respectively. In vitro, 5-10 µg/mL fibroin per se increased cell viability and reverted the morphological alterations caused by GOx (0.1 U/mL). Fibroin 10 µg/mL evoked proliferative signaling upregulating the expression of decorin, scleraxin, tenomodulin (p < 0.001), FGF-2, and tenascin-C (p < 0.01) genes. Fibroin enhanced the basal FGF-2 and MMP-9 protein concentrations and prevented their GOx-mediated decrease. Furthermore, fibroin positively modulated the production of collagen type I. In vivo, the peri-tendinous injection of fibroin (5 mg) reduced the development of spontaneous pain and hypersensitivity (p < 0.01) induced by the intra-tendinous injection of collagenase; the efficacy was comparable to that of triamcinolone. The pain-relieving action of fibroin (peri-tendinous) was confirmed in the model of tendinopathy induced by carrageenan (intra-tendinous) where this fibrous protein was also able to improve tendon matrix organization, normalizing the orientation of collagen fibers. In conclusion, the use of fibroin in tendinopathies is suggested taking advantage of its excellent mechanical properties, pain-relieving effects, and ability to promote tissue regeneration processes.


Subject(s)
Fibroins , Tendinopathy , Animals , Collagenases/metabolism , Fibroins/adverse effects , Fibroins/metabolism , Pain/metabolism , Rats , Tendinopathy/chemically induced , Tendinopathy/drug therapy , Tendinopathy/metabolism , Tenocytes/metabolism
7.
Pharmaceutics ; 14(2)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35214131

ABSTRACT

Chronic pain management requires increasing doses of opioids, the milestone of painkillers, which may result in the onset of tolerance with exacerbated side effects. Maintaining stable analgesia with low doses of opioids is thus imperative. N-palmitoylethanolamine (PEA) is an endogenous lipid compound endowed with pain-relieving as well as anti-inflammatory properties. The ultramicronized formulation of PEA was recently demonstrated to be able to modulate morphine's effects, delaying tolerance and improving efficacy. To evaluate the possible application to other opioids, in this study, we analysed the capacity of ultramicronized PEA to regulate analgesia and tolerance induced by oxycodone and tramadol. Pre-emptive and continuative treatment with ultramicronized PEA (30 mg kg-1, daily, per os) delayed the onset of opioid tolerance and enhanced opioid analgesia when it was acutely administered in association with tramadol (20 mg kg-1, daily, subcutaneously) or oxycodone (0.5 mg kg-1, daily, subcutaneously). Moreover, PEA exerted antinociceptive effects on tolerant rats, suggesting the use of PEA together with opioids for stable, long-lasting analgesia. To that purpose, the oxycodone dose needed to be increased from 0.3 mg kg-1 (day 1) up to 1 mg kg-1 (day 31) in the oxycodone + vehicle group; the tramadol dose was progressively enhanced from 15 mg kg-1 to 50 mg kg-1 in 31 days in the tramadol + vehicle group. Acute oral co-treatment with PEA (120 mg kg-1) achieved the same analgesia without increasing the dose of both opioids. The behavioural effects of PEA on opioid chronic treatment paralleled a decrease in astrocyte activation in the dorsal horn of the spinal cord (a marker of the development of opioid tolerance) and with a modulation of mRNA expression of IL-6 and serpin-A3. In conclusion, pre- and co-administration of ultramicronized PEA delayed the development of tramadol tolerance, potentiating either oxycodone or tramadol analgesia and allowing a long-lasting analgesic effect with a low opioid dose regimen. The use of PEA is suggested for clinical purposes to support the opioid-based management of persistent pain.

8.
Pain ; 163(5): 861-877, 2022 05 01.
Article in English | MEDLINE | ID: mdl-34393197

ABSTRACT

ABSTRACT: Recent findings linked gastrointestinal disorders characterized by abdominal pain to gut microbiota composition. The present work aimed to evaluate the power of gut microbiota as a visceral pain modulator and, consequently, the relevance of its manipulation as a therapeutic option in reversing postinflammatory visceral pain persistence. Colitis was induced in mice by intrarectally injecting 2,4-dinitrobenzenesulfonic acid (DNBS). The effect of faecal microbiota transplantation from viscerally hypersensitive DNBS-treated and naive donors was evaluated in control rats after an antibiotic-mediated microbiota depletion. Faecal microbiota transplantation from DNBS donors induced a long-lasting visceral hypersensitivity in control rats. Pain threshold trend correlated with major modifications in the composition of gut microbiota and short chain fatty acids. By contrast, no significant alterations of colon histology, permeability, and monoamines levels were detected. Finally, by manipulating the gut microbiota of DNBS-treated animals, a counteraction of persistent visceral pain was achieved. The present results provide novel insights into the relationship between intestinal microbiota and visceral hypersensitivity, highlighting the therapeutic potential of microbiota-targeted interventions.


Subject(s)
Gastrointestinal Microbiome , Visceral Pain , Animals , Bacteria , Colon/pathology , Fecal Microbiota Transplantation , Mice , Rats , Visceral Pain/drug therapy
9.
Biomedicines ; 9(11)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34829900

ABSTRACT

Acute inflammation is particularly relevant in the pathogenesis of visceral hypersensitivity associated with inflammatory bowel diseases. Glia within the enteric nervous system, as well as within the central nervous system, contributes to neuroplasticity during inflammation, but whether enteric glia has the potential to modify visceral sensitivity following colitis is still unknown. This work aimed to investigate the occurrence of changes in the neuron-glial networks controlling visceral perception along the gut-brain axis during colitis, and to assess the effects of peripheral glial manipulation. Enteric glia activity was altered by the poison fluorocitrate (FC; 10 µmol kg-1 i.p.) before inducing colitis in animals (2,4-dinitrobenzenesulfonic acid, DNBS; 30 mg in 0.25 mL EtOH 50%), and visceral sensitivity, colon damage, and glia activation along the pain pathway were studied. FC injection significantly reduced the visceral hyperalgesia, the histological damage, and the immune activation caused by DNBS. Intestinal inflammation is associated with a parallel overexpression of TRPV1 and S100ß along the gut-brain axis (colonic myenteric plexuses, dorsal root ganglion, and periaqueductal grey area). This effect was prevented by FC. Peripheral glia activity modulation emerges as a promising strategy for counteracting visceral pain induced by colitis.

10.
J Exp Clin Cancer Res ; 40(1): 320, 2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34649573

ABSTRACT

BACKGROUND: Neuropathic pain is a clinically relevant adverse effect of several anticancer drugs that markedly impairs patients' quality of life and frequently leads to dose reduction or therapy discontinuation. The poor knowledge about the mechanisms involved in neuropathy development and pain chronicization, and the lack of effective therapies, make treatment of chemotherapy-induced neuropathic pain an unmet medical need. In this context, the vascular endothelial growth factor A (VEGF-A) has emerged as a candidate neuropathy hallmark and its decrease has been related to pain relief. In the present study, we have investigated the role of VEGF-A and its receptors, VEGFR-1 and VEGFR-2, in pain signalling and in chemotherapy-induced neuropathy establishment as well as the therapeutic potential of receptor blockade in the management of pain. METHODS: Behavioural and electrophysiological analyses were performed in an in vivo murine model, by using selective receptor agonists, blocking monoclonal antibodies or siRNA-mediated silencing of VEGF-A and VEGFRs. Expression of VEGF-A and VEGFR-1 in astrocytes and neurons was detected by immunofluorescence staining and confocal microscopy analysis. RESULTS: In mice, the intrathecal infusion of VEGF-A (VEGF165 isoforms) induced a dose-dependent noxious hypersensitivity and this effect was mediated by VEGFR-1. Consistently, electrophysiological studies indicated that VEGF-A strongly stimulated the spinal nociceptive neurons activity through VEGFR-1. In the dorsal horn of the spinal cord of animals affected by oxaliplatin-induced neuropathy, VEGF-A expression was increased in astrocytes while VEGFR-1 was mainly detected in neurons, suggesting a VEGF-A/VEGFR-1-mediated astrocyte-neuron cross-talk in neuropathic pain pathophysiology. Accordingly, the selective knockdown of astrocytic VEGF-A by intraspinal injection of shRNAmir blocked the development of oxaliplatin-induced neuropathic hyperalgesia and allodynia. Interestingly, both intrathecal and systemic administration of the novel anti-VEGFR-1 monoclonal antibody D16F7, endowed with anti-angiogenic and antitumor properties, reverted oxaliplatin-induced neuropathic pain. Besides, D16F7 effectively relieved hypersensitivity induced by other neurotoxic chemotherapeutic agents, such as paclitaxel and vincristine. CONCLUSIONS: These data strongly support the role of the VEGF-A/VEGFR-1 system in mediating chemotherapy-induced neuropathic pain at the central nervous system level. Thus, treatment with the anti-VEGFR-1 mAb D16F7, besides exerting antitumor activity, might result in the additional advantage of attenuating neuropathic pain when combined with neurotoxic anticancer agents.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Neuralgia/chemically induced , Neuralgia/drug therapy , Animals , Antibodies, Monoclonal/pharmacology , Humans , Male , Mice , Signal Transduction
11.
Cells ; 10(10)2021 09 26.
Article in English | MEDLINE | ID: mdl-34685520

ABSTRACT

Persistent pain affecting patients with inflammatory bowel diseases (IBDs) is still very difficult to treat. Carbonic anhydrase (CA) represents an intriguing pharmacological target considering the anti-hyperalgesic efficacy displayed by CA inhibitors in both inflammatory and neuropathic pain models. The aim of this work was to evaluate the effect of inhibiting CA IV, particularly when expressed in the gut, on visceral pain associated with colitis induced by 2,4-di-nitrobenzene sulfonic acid (DNBS) in rats. Visceral sensitivity was assessed by measuring animals' abdominal responses to colorectal distension. Repeated treatment with the selective CA IV inhibitors AB-118 and NIK-67 effectively counteracted the development of visceral pain induced by DNBS. In addition to pain relief, AB-118 showed a protective effect against colon damage. By contrast, the anti-hyperalgesic activity of NIK-67 was independent of colon healing, suggesting a direct protective effect of NIK-67 on visceral sensitivity. The enzymatic activity and the expression of CA IV resulted significantly increased after DNBS injection. NIK-67 normalised CA IV activity in DNBS animals, while AB-118 was partially effective. None of these compounds influenced CA IV expression through the colon. Although further investigations are needed to study the underlying mechanisms, CA IV inhibitors are promising candidates in the search for therapies to relieve visceral pain in IBDs.


Subject(s)
Carbonic Anhydrase IV/drug effects , Carbonic Anhydrase Inhibitors/pharmacology , Inflammatory Bowel Diseases/drug therapy , Visceral Pain/drug therapy , Animals , Carbonic Anhydrase IV/metabolism , Carbonic Anhydrase Inhibitors/metabolism , Carbonic Anhydrases/metabolism , Carbonic Anhydrases/therapeutic use , Colon/drug effects , Colon/metabolism , Disease Models, Animal , Inflammatory Bowel Diseases/metabolism , Rats, Sprague-Dawley , Visceral Pain/metabolism
12.
Neurotherapeutics ; 18(3): 2008-2020, 2021 07.
Article in English | MEDLINE | ID: mdl-34312766

ABSTRACT

Chemotherapy-induced neuropathy (CIN) is a major dose-limiting side effect of anticancer therapy that can compel therapy discontinuation. Inadequate analgesic efficacy of current pharmacological approaches requires the identification of innovative therapeutics and, hence, the purpose of this study is to conduct a preclinical evaluation of the efficacy of DDD-028, a versatile pentacyclic pyridoindole derivative, against paclitaxel-induced neuropathic pain. In two separate experiments, DDD-028 was administered per os acutely (1-25 mg kg-1) or repeatedly (10 mg kg-1) in paclitaxel-treated rats. The response to mechanical noxious stimulus (paw pressure) as well as to non-noxious mechanical (von Frey) and thermal (cold plate) stimuli was investigated. Acute administration of DDD-028 induced a dose-dependent anti-neuropathic pain effect in all tests performed. Further, repeated daily treatment for 18 consecutive days (starting the first day of paclitaxel administration) significantly reduced the development of pain over time without the development of tolerance to the anti-hyperalgesic effect. Ex vivo analysis showed that DDD-028 was able to reduce oxidative damage of dorsal root ganglia as evidenced by the increase in the level of carbonylated proteins and the decrease in catalase activity. In the lumbar spinal cord, periaqueductal gray matter, thalamus, and somatosensory cortex 1, DDD-28 significantly prevented the activation of microglia and astrocytes. The pharmacodynamic study revealed that the pain-relieving effects of DDD-028 were fully blocked by both the non-selective nicotinic receptor (nAChR) antagonist mecamylamine and by the selective α7 nAChR antagonist methyllycaconitine. In conclusion, DDD-028 was active in reducing paclitaxel-induced neuropathic pain after single or repeated administrations without tolerance development and displaying a double symptomatic and neuroprotective profile. DDD-028 could represent a valuable candidate for the treatment of CIN.


Subject(s)
Analgesics, Non-Narcotic/therapeutic use , Azepines/therapeutic use , Carbolines/therapeutic use , Neuralgia/chemically induced , Neuralgia/drug therapy , Neuroprotective Agents/therapeutic use , Paclitaxel/toxicity , Analgesics, Non-Narcotic/pharmacology , Animals , Antineoplastic Agents, Phytogenic/toxicity , Azepines/pharmacology , Carbolines/pharmacology , Dose-Response Relationship, Drug , Male , Neuralgia/metabolism , Neuroprotective Agents/pharmacology , Rats , Rats, Sprague-Dawley , Treatment Outcome
13.
Food Funct ; 11(12): 10423-10435, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33237043

ABSTRACT

Management of abdominal pain, a common symptom of IBDs and IBS, is still a clinical problem. Extra virgin olive oil (EVOO), a main component of the Mediterranean diet, shows positive effects on chronic inflammation in IBDs. In this study, the effect of the oral administration of EVOO (3 mL) and two olive milling by-products, DPA (300 mg kg-1) and DRF (300 mg kg-1), on preventing the development of abdominal pain in a DNBS-induced colitis model in rats was evaluated. The doses were chosen with the aim of simulating a plausible daily intake in humans. DPA and EVOO treatments significantly reduced the abdominal viscero-motor response to colon-rectal distension at 2 and 3 mL of balloon distension volume, both 7 and 14 days after the DNBS-injection. DRF showed efficacy in the reduction of visceral hypersensitivity only with 3 mL balloon inflation. In awake animals, DPA and DRF reduced pain perception (evaluated as abdominal withdrawal reflex) with all balloon distension volumes, while EVOO was effective only with higher distension volumes. Fourteen days after the DNBS-injection, all samples reduced the macroscopic intestinal damage (quantified as the macroscopic damage score) also showing, at the microscopic level, a reduction of the inflammatory infiltrate (quantified by hematoxylin and eosin analysis), fibrosis (highlighted by picrosirius red staining), the increase in mast cells and their degranulation (analyzed by triptase immunohistochemistry). This is the first report on the promotion of abdominal pain relief in a rat model obtained administering EVOO and two derived by-products. Our results suggest a protective role of phenol-rich EVOO and milling by-products, which may be proposed as food ingredients for novel functional foods.


Subject(s)
Abdominal Pain/drug therapy , Gastrointestinal Diseases/drug therapy , Olea/chemistry , Olive Oil/therapeutic use , Phenols/therapeutic use , Animals , Colitis/chemically induced , Colitis/drug therapy , Colon/pathology , Diet, Mediterranean , Dinitrofluorobenzene/adverse effects , Dinitrofluorobenzene/analogs & derivatives , Disease Models, Animal , Functional Food , Inflammation , Male , Olive Oil/chemistry , Phenols/analysis , Plant Oils , Rats , Rats, Sprague-Dawley
14.
Front Pharmacol ; 11: 576624, 2020.
Article in English | MEDLINE | ID: mdl-33071790

ABSTRACT

Opioids are broad spectrum analgesics that are an integral part of the therapeutic armamentarium to combat pain in the clinical practice. Unfortunately, together with analgesia, a number of adverse effects can occur such as nausea, vomiting, constipation, gastrointestinal alterations and cognitive impairments. Naltrexone is a competitive antagonist of opioid receptors commonly used to treat opioid addiction; its oral use against agonists side effects is limited by the decrease of opioids-therapeutic efficacy and own adverse effects. The intranasal delivery of naltrexone could offer a quick and effective achievement of CNS based on extracellular mechanisms including perineural and perivascular transport. The aim of the study was to test the efficacy of intranasal low-dose naltrexone in reducing intraperitoneal morphine and oxycodone side effects in rodents. In mice, 1 µg naltrexone intranasally administered 30 min before opioids reduced cognitive impairments and motor alteration induced by 10 mg kg-1 morphine and 60 mg kg-1 oxycodone in the Passive avoidance and Rota rod tests, respectively. Moreover, naltrexone rebalanced opioid-induced reduction of the intestinal transit and latency of feces expulsion as well as food intake inhibition. Importantly, 1 µg naltrexone instillation did not block analgesia as demonstrated by the Hot plate test. In rats, intranasal naltrexone counteracted the opioid-induced pica phenomenon related to emesis and increased water and palatable food intake. The effects were comparable to that achieved by metoclopramide used as reference drug. Treatments did not influence body weight. Lastly, the safety of the intranasal delivery has been checked by hematoxylin-eosin staining that did not show histological alterations of the nasal cavity. In conclusion, intranasal low-dose naltrexone counteracted morphine and oxycodone induced gastrointestinal and CNS side effects without impairing opioid analgesia. It is a candidate to be a valid clinical strategy deserving deep analysis.

15.
Cells ; 9(8)2020 07 24.
Article in English | MEDLINE | ID: mdl-32722246

ABSTRACT

The management of visceral pain is a major clinical problem in patients affected by gastrointestinal disorders. The poor knowledge about pain chronicization mechanisms prompted us to study the functional and morphological alterations of the gut and nervous system in the animal model of persistent visceral pain caused by 2,4-dinitrobenzenesulfonic acid (DNBS). This agent, injected intrarectally, induced a colonic inflammation peaking on day 3 and remitting progressively from day 7. In concomitance with bowel inflammation, the animals developed visceral hypersensitivity, which persisted after colitis remission for up to three months. On day 14, the administration of pain-relieving drugs (injected intraperitoneally and intrathecally) revealed a mixed nociceptive, inflammatory and neuropathic pain originating from both the peripheral and central nervous system. At this time point, the colonic histological analysis highlighted a partial restitution of the tunica mucosa, transmural collagen deposition, infiltration of mast cells and eosinophils, and upregulation of substance P (SP)-positive nerve fibers, which were surrounded by eosinophils and MHC-II-positive macrophages. A significant activation of microglia and astrocytes was observed in the dorsal and ventral horns of spinal cord. These results suggest that the persistence of visceral pain induced by colitis results from maladaptive plasticity of the enteric, peripheral and central nervous systems.


Subject(s)
Gastrointestinal Microbiome/physiology , Spinal Cord/physiopathology , Visceral Pain/physiopathology , Animals , Humans , Male , Rats , Rats, Sprague-Dawley
16.
Int J Mol Sci ; 21(12)2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32560291

ABSTRACT

The management of chronic visceral pain related to Inflammatory Bowel Diseases or Irritable Bowel Syndrome is still a clinical problem and new therapeutic strategies continue to be investigated. In the present study, the efficacy of a pomegranate decoction and of its polysaccharide and ellagitannin components in preventing the development of colitis-induced abdominal pain in rats was evaluated. After colitis induction by 2,4-dinitrobenzenesulfonic acid (DNBS), the pomegranate decoction (300 mg kg-1), polysaccharides (300 mg kg-1), and ellagitannins (45 mg kg-1) were orally administered for 14 days. Repeated treatment with decoction reduced visceral hypersensitivity in the colitic animals both at 7 and 14 days. Similar efficacy was shown by polysaccharides, but with lower potency. Ellagitannins administered at dose equivalent to decoction content showed higher efficacy in reducing the development of visceral pain. Macroscopic and microscopic evaluations performed on the colon 14 days after the damage showed that all three preparations reduced the overall amount of mast cells, the number of degranulated mast cells, and the density of collagen fibers in the mucosal stroma. Although ellagitannins seem to be responsible for most of the beneficial effects of pomegranate on DNBS-induced colitis, the polysaccharides support and enhance its effect. Therefore, pomegranate mesocarp preparations could represent a complementary approach to conventional therapies for promoting abdominal pain relief.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Colitis/complications , Plant Extracts/pharmacology , Pomegranate/chemistry , Visceral Pain/etiology , Animals , Anti-Inflammatory Agents/chemistry , Biomarkers , Disease Models, Animal , Immunohistochemistry , Plant Extracts/chemistry , Rats , Retreatment , Treatment Outcome , Visceral Pain/diagnosis , Visceral Pain/drug therapy
17.
Pain ; 161(9): 2179-2190, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32379223

ABSTRACT

ABSTRACT: Pharmacological tools for chronic visceral pain management are still limited and inadequate. A3 adenosine receptor (A3AR) agonists are effective in different models of persistent pain. Recently, their activity has been related to the block of N-type voltage-gated Ca2+ channels (Cav2.2) in dorsal root ganglia (DRG) neurons. The present work aimed to evaluate the efficacy of A3AR agonists in reducing postinflammatory visceral hypersensitivity in both male and female rats. Colitis was induced by the intracolonic instillation of 2,4-dinitrobenzenesulfonic acid (DNBS; 30 mg in 0.25 mL 50% EtOH). Visceral hypersensitivity was assessed by measuring the visceromotor response and the abdominal withdrawal reflex to colorectal distension. The effects of A3AR agonists (MRS5980 and Cl-IB-MECA) were evaluated over time after DNBS injection and compared to that of the selective Cav2.2 blocker PD173212, and the clinically used drug linaclotide. A3AR agonists significantly reduced DNBS-evoked visceral pain both in the postinflammatory (14 and 21 days after DNBS injection) and persistence (28 and 35 days after DNBS) phases. Efficacy was comparable to effects induced by linaclotide. PD173212 fully reduced abdominal hypersensitivity to control values, highlighting the role of Cav2.2. The effects of MRS5980 and Cl-IB-MECA were completely abolished by the selective A3AR antagonist MRS1523. Furthermore, patch-clamp recordings showed that A3AR agonists inhibited Cav2.2 in dorsal root ganglia neurons isolated from either control or DNBS-treated rats. The effect on Ca2+ current was PD173212-sensitive and prevented by MRS1523. A3AR agonists are effective in relieving visceral hypersensitivity induced by DNBS, suggesting a potential therapeutic role against abdominal pain.


Subject(s)
Calcium Channels, N-Type , Visceral Pain , Adenosine A3 Receptor Agonists , Animals , Female , Ganglia, Spinal , Male , Pain Management , Rats , Visceral Pain/drug therapy
18.
Molecules ; 25(9)2020 04 30.
Article in English | MEDLINE | ID: mdl-32366049

ABSTRACT

: Sarcopenia is a clinical problem associated with several pathological and non-pathological conditions. The aim of the present research is the evaluation of the pharmacological profile of the leucine metabolite ß-hydroxy-ß-methyl butyrate (HMB) associated with the natural R(+) stereoisomer of lipoic acid (R(+)LA) in a cellular model of muscle wasting. The C2C12 cell line is used as myoblasts or is differentiated in myotubes, sarcopenia is induced by dexamethasone (DEX). A Bonferroni significant difference procedure is used for a post hoc comparison. DEX toxicity (0.01-300 µM concentration range) is evaluated in myoblasts to measure cell viability and caspase 3 activation after 24 h and 48 h; cell incubation with 1 µM DEX for 48 h is chosen as optimal treatment for decreasing cell viability and increasing caspase 3 activity. R(+)LA or HMB significantly prevents DEX-induced cell mortality; the efficacy is improved when 100 µM R(+)LA is combined with 1 mM HMB. Regarding myoblasts, this combination significantly reduces DEX-evoked O2- production and protein oxidative damage. During the early phase of myotube formation, the mixture preserves the number of myogenin-positive cells, whereas it completely prevents the DEX-dependent damage in a later phase of myotube differentiation (7 days), as evaluated by cell diameter and percentage of multinucleated cells. R(+)LA in association with HMB is suggested for sarcopenia therapy.


Subject(s)
Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Sarcopenia/metabolism , Thioctic Acid/pharmacology , Valerates/pharmacology , Animals , Biomarkers , Cell Line , Cell Survival/drug effects , Cells, Cultured , Dexamethasone/pharmacology , Fluorescent Antibody Technique , Mice , Muscle, Skeletal/drug effects , Muscular Atrophy/drug therapy , Muscular Atrophy/etiology , Muscular Atrophy/metabolism , Myoblasts/drug effects , Oxidative Stress , Sarcopenia/drug therapy , Sarcopenia/etiology
19.
Bioorg Chem ; 100: 103880, 2020 07.
Article in English | MEDLINE | ID: mdl-32388428

ABSTRACT

The resolution of inflammation is an active response involving the interaction of pro-resolving mediators with specific receptors, such as N-formyl peptide receptor 2 (FPR2). FPRs represent potentially important therapeutic targets for the treatment of some pathologies, including asthma and rheumatoid arthritis. Previously, we identified selective or mixed FPR agonists with a pyridazin-3(2H)-one scaffold, all containing a 4-bromophenylacetamide fragment at N-2. The most effective compounds in this series were EC3, a potent mixed FPR1/FPR2/FPR3 agonist, and EC10, which had a preference for FPR1. We report here a new series of pyridinone and pyrimidindione derivatives containing the 4-(bromophenyl)acetamide substituent that was essential for activity in the pyridazinone series. All new compounds were evaluated for FPR agonist activity in HL60 cells transfected with FPR1 or FPR2 and in human neutrophils. While most of the pyridinone derivatives had reasonable FPR agonist activity in the submicromolar/micromolar range, the pyrimidindione derivatives were less active. Compound 2a (N-(4-bromophenyl)-2-[3-cyano-5-(3-methoxyphenyl)-6-methyl-2-oxopyridin-1(2H)-yl]acetamide) was the most active pyridinone derivative and had a 10-fold preference for FPR2 (EC50 = 120 nM) versus FPR1 (EC50 = 1.6 µM). To assess their therapeutic activity, compounds 2a, EC3, and EC10 were evaluated in vivo using a rat model of rheumatoid arthritis. All three compounds increased the pain threshold and reduced pain hypersensitivity in the treated rats versus control rats, although 2a and EC10 were much more effective than EC3. Thus, these FPR agonists represent potential leads to develop for the treatment of inflammatory diseases such as rheumatoid arthritis.


Subject(s)
Pyridones/chemistry , Pyridones/pharmacology , Pyrimidinones/chemistry , Pyrimidinones/pharmacology , Receptors, Formyl Peptide/agonists , Animals , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Cell Line, Tumor , Cells, Cultured , Drug Design , Humans , Male , Pyridones/therapeutic use , Pyrimidinones/therapeutic use , Rats, Sprague-Dawley , Receptors, Formyl Peptide/metabolism
20.
Nutrients ; 12(1)2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31861862

ABSTRACT

Abdominal pain is a frequent symptom of irritable bowel syndrome (IBS) and inflammatory bowel diseases (IBDs). Although the knowledge of these pathologies is progressing, new therapeutic strategies continue to be investigated. In the present study, the effect of a system of molecules of natural origin (a medical device according to EU Directive 93/42/EC, engineered starting from Boswellia serrata resins, Aloe vera polysaccharides and Matricaria chamomilla and Melissa officinalis polyphenols) was evaluated against the intestinal damage and visceral pain development in DNBS-induced colitis model in rats. The system (250 and 500 mg kg-1) was orally administered once daily, starting three days before the injection of 2,4-dinitrobenzenesulfonic acid (DNBS) and for 14 days thereafter. The viscero-motor response (VMR) to colon-rectal balloon distension (CRD) was used as measure of visceral sensitivity. The product significantly reduced the VMR of DNBS-treated animals. Its effect on pain threshold was better than dexamethasone and mesalazine, and not lower than amitriptyline and otilonium bromide. At microscopic and macroscopic level, the tested system was more effective in protecting the intestinal mucosa than dexamethasone and mesalazine, promoting the healing of tissue lesions. Therefore, we suggest that the described system of molecules of natural origin may represent a therapeutic option to manage painful bowel diseases.


Subject(s)
Abdominal Pain/drug therapy , Plant Preparations , Resins, Plant , Visceral Pain/drug therapy , Aloe/chemistry , Animals , Chamomile/chemistry , Colitis/drug therapy , Disease Models, Animal , Flavonoids , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...