Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Trends Genet ; 40(2): 109-111, 2024 02.
Article in English | MEDLINE | ID: mdl-38272738

ABSTRACT

The consequences of whole-genome duplication (WGD) remain elusive. A new study by Ebadi et al. simulating duplicated gene networks predicts that WGD immediately generates autopolyploids with extreme phenotypes and increases phenotypic variance. Such theoretical work calls for new experimental studies addressing to what extent WGD may be beneficial under environmental changes.


Subject(s)
Gene Duplication , Gene Regulatory Networks , Evolution, Molecular , Genome
2.
New Phytol ; 240(5): 2072-2084, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37793435

ABSTRACT

Lateral gene transfer (LGT) is the movement of DNA between organisms without sexual reproduction. The acquired genes represent genetic novelties that have independently evolved in the donor's genome. Phylogenetic methods have shown that LGT is widespread across the entire grass family, although we know little about the underlying dynamics. We identify laterally acquired genes in five de novo reference genomes from the same grass genus (four Alloteropsis semialata and one Alloteropsis angusta). Using additional resequencing data for a further 40 Alloteropsis individuals, we place the acquisition of each gene onto a phylogeny using stochastic character mapping, and then infer rates of gains and losses. We detect 168 laterally acquired genes in the five reference genomes (32-100 per genome). Exponential decay models indicate that the rate of LGT acquisitions (6-28 per Ma) and subsequent losses (11-24% per Ma) varied significantly among lineages. Laterally acquired genes were lost at a higher rate than vertically inherited loci (0.02-0.8% per Ma). This high turnover creates intraspecific gene content variation, with a preponderance of them occurring as accessory genes in the Alloteropsis pangenome. This rapid turnover generates standing variation that can ultimately fuel local adaptation.


Subject(s)
Gene Transfer, Horizontal , Poaceae , Humans , Phylogeny , Poaceae/genetics , Genome , Evolution, Molecular
3.
PLoS Genet ; 19(9): e1010883, 2023 09.
Article in English | MEDLINE | ID: mdl-37656747

ABSTRACT

As species expand their geographic ranges, colonizing populations face novel ecological conditions, such as new environments and limited mates, and suffer from evolutionary consequences of demographic change through bottlenecks and mutation load accumulation. Self-fertilization is often observed at species range edges and, in addition to countering the lack of mates, is hypothesized as an evolutionary advantage against load accumulation through increased homozygosity and purging. We study how selfing impacts the accumulation of genetic load during range expansion via purging and/or speed of colonization. Using simulations, we disentangle inbreeding effects due to demography versus due to selfing and find that selfers expand faster, but still accumulate load, regardless of mating system. The severity of variants contributing to this load, however, differs across mating system: higher selfing rates purge large-effect recessive variants leaving a burden of smaller-effect alleles. We compare these predictions to the mixed-mating plant Arabis alpina, using whole-genome sequences from refugial outcrossing populations versus expanded selfing populations. Empirical results indicate accumulation of expansion load along with evidence of purging in selfing populations, concordant with our simulations, suggesting that while purging is a benefit of selfing evolving during range expansions, it is not sufficient to prevent load accumulation due to range expansion.


Subject(s)
Inbreeding , Self-Fertilization , Self-Fertilization/genetics , Alleles , Biological Evolution , Cell Communication
4.
J Invertebr Pathol ; 199: 107953, 2023 07.
Article in English | MEDLINE | ID: mdl-37336478

ABSTRACT

Entomopathogenic nematodes (EPNs) are soil-dwelling parasitic roundworms commonly used as biocontrol agents of insect pests in agriculture. EPN dauer juveniles locate and infect a host in which they will grow and multiply until resource depletion. During their free-living stage, EPNs face a series of internal and environmental stresses. Their ability to overcome these challenges is crucial to determine their infection success and survival. In this review, we provide a comprehensive overview of EPN response to stresses associated with starvation, low/elevated temperatures, desiccation, osmotic stress, hypoxia, and ultra-violet light. We further report EPN defense strategies to cope with biotic stressors such as viruses, bacteria, fungi, and predatory insects. By comparing the genetic and biochemical basis of these strategies to the nematode model Caenorhabditis elegans, we provide new avenues and targets to select and engineer precision nematodes adapted to specific field conditions.


Subject(s)
Nematoda , Animals , Nematoda/physiology , Insecta/parasitology , Agriculture , Soil/parasitology , Caenorhabditis elegans
5.
Ann Bot ; 129(7): 857-868, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35670810

ABSTRACT

BACKGROUND AND AIMS: Habitat degradation and landscape fragmentation dramatically lower population sizes of rare plant species. Decreasing population sizes may, in turn, negatively affect genetic diversity and reproductive fitness, which can ultimately lead to local extinction of populations. Although such extinction vortex dynamics have been postulated in theory and modelling for decades, empirical evidence from local extinctions of plant populations is scarce. In particular, comparisons between current vs. historical genetic diversity and differentiation are lacking despite their potential to guide conservation management. METHODS: We studied the population genetic signatures of the local extinction of Biscutella laevigata subsp. gracilis populations in Central Germany. We used microsatellites to genotype individuals from 15 current populations, one ex situ population, and 81 herbarium samples from five extant and 22 extinct populations. In the current populations, we recorded population size and fitness proxies, collected seeds for a germination trial and conducted a vegetation survey. The latter served as a surrogate for habitat conditions to study how habitat dissimilarity affects functional connectivity among the current populations. KEY RESULTS: Bayesian clustering revealed similar gene pool distribution in current and historical samples but also indicated that a distinct genetic cluster was significantly associated with extinction probability. Gene flow was affected by both the spatial distance and floristic composition of population sites, highlighting the potential of floristic composition as a powerful predictor of functional connectivity which may promote decision-making for reintroduction measures. For an extinct population, we found a negative relationship between sampling year and heterozygosity. Inbreeding negatively affected germination. CONCLUSIONS: Our study illustrates the usefulness of historical DNA to study extinction vortices in threatened species. Our novel combination of classical population genetics together with data from herbarium specimens, an ex situ population and a germination trial underlines the need for genetic rescue measures to prevent extinction of B. laevigata in Central Germany.


Subject(s)
Gene Flow , Genetics, Population , Bayes Theorem , Conservation of Natural Resources , Extinction, Biological , Genetic Variation , Inbreeding , Population Density
6.
Nat Commun ; 12(1): 4979, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34404804

ABSTRACT

Relative contributions of pre-existing vs de novo genomic variation to adaptation are poorly understood, especially in polyploid organisms. We assess this in high resolution using autotetraploid Arabidopsis arenosa, which repeatedly adapted to toxic serpentine soils that exhibit skewed elemental profiles. Leveraging a fivefold replicated serpentine invasion, we assess selection on SNPs and structural variants (TEs) in 78 resequenced individuals and discover significant parallelism in candidate genes involved in ion homeostasis. We further model parallel selection and infer repeated sweeps on a shared pool of variants in nearly all these loci, supporting theoretical expectations. A single striking exception is represented by TWO PORE CHANNEL 1, which exhibits convergent evolution from independent de novo mutations at an identical, otherwise conserved site at the calcium channel selectivity gate. Taken together, this suggests that polyploid populations can rapidly adapt to environmental extremes, calling on both pre-existing variation and novel polymorphisms.


Subject(s)
Adaptation, Physiological/drug effects , Adaptation, Physiological/genetics , Alleles , Arabidopsis/drug effects , Arabidopsis/genetics , Genome, Plant , Polyploidy , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Calcium Channels/metabolism , Mutation , Polymorphism, Single Nucleotide , Secologanin Tryptamine Alkaloids/metabolism , Soil/chemistry
7.
Mob DNA ; 12(1): 7, 2021 Feb 27.
Article in English | MEDLINE | ID: mdl-33639991

ABSTRACT

BACKGROUND: Plant genomes can respond rapidly to environmental changes and transposable elements (TEs) arise as important drivers contributing to genome dynamics. Although some elements were reported to be induced by various abiotic or biotic factors, there is a lack of general understanding on how environment influences the activity and diversity of TEs. Here, we combined common garden experiment with short-read sequencing to investigate genomic abundance and expression of 2245 consensus TE sequences (containing retrotransposons and DNA transposons) in an alpine environment in Arabidopsis arenosa. To disentangle general trends from local differentiation, we leveraged four foothill-alpine population pairs from different mountain regions. Seeds of each of the eight populations were raised under four treatments that differed in temperature and irradiance, two factors varying with elevation. RNA-seq analysis was performed on leaves of young plants to test for the effect of elevation and subsequently of temperature and irradiance on expression of TE sequences. RESULTS: Genomic abundance of the 2245 consensus TE sequences varied greatly between the mountain regions in line with neutral divergence among the regions, representing distinct genetic lineages of A. arenosa. Accounting for intraspecific variation in abundance, we found consistent transcriptomic response for some TE sequences across the different pairs of foothill-alpine populations suggesting parallelism in TE expression. In particular expression of retrotransposon LTR Copia (e.g. Ivana and Ale clades) and LTR Gypsy (e.g. Athila and CRM clades) but also non-LTR LINE or DNA transposon TIR MuDR consistently varied with elevation of origin. TE sequences responding specifically to temperature and irradiance belonged to the same classes as well as additional TE clades containing potentially stress-responsive elements (e.g. LTR Copia Sire and Tar, LTR Gypsy Reina). CONCLUSIONS: Our study demonstrated that the A. arenosa genome harbours a considerable diversity of TE sequences whose abundance and expression response varies across its native range. Some TE clades may contain transcriptionally active elements responding to a natural environmental gradient. This may further contribute to genetic variation between populations and may ultimately provide new regulatory mechanisms to face environmental challenges.

8.
Mol Ecol Resour ; 21(3): 661-676, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33058468

ABSTRACT

The Arctic is one of the most extreme terrestrial environments on the planet. Here, we present the first chromosome-scale genome assembly of a plant adapted to the high Arctic, Draba nivalis (Brassicaceae), an attractive model species for studying plant adaptation to the stresses imposed by this harsh environment. We used an iterative scaffolding strategy with data from short-reads, single-molecule long reads, proximity ligation data, and a genetic map to produce a 302 Mb assembly that is highly contiguous with 91.6% assembled into eight chromosomes (the base chromosome number). To identify candidate genes and gene families that may have facilitated adaptation to Arctic environmental stresses, we performed comparative genomic analyses with nine non-Arctic Brassicaceae species. We show that the D. nivalis genome contains expanded suites of genes associated with drought and cold stress (e.g., related to the maintenance of oxidation-reduction homeostasis, meiosis, and signaling pathways). The expansions of gene families associated with these functions appear to be driven in part by the activity of transposable elements. Tests of positive selection identify suites of candidate genes associated with meiosis and photoperiodism, as well as cold, drought, and oxidative stress responses. Our results reveal a multifaceted landscape of stress adaptation in the D. nivalis genome, offering avenues for the continued development of this species as an Arctic model plant.


Subject(s)
Adaptation, Physiological , Brassicaceae , Genome, Plant , Arctic Regions , Brassicaceae/genetics , Genomics
9.
Ann Bot ; 127(1): 21-31, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32738145

ABSTRACT

BACKGROUND AND AIMS: Hybridization is known to drive plant speciation through the establishment of homoploid or allopolyploid hybrid species. Here we investigate the origin of Pulmonaria helvetica, a narrow endemic species described across a restricted area of Switzerland that was entirely covered by ice during the last glacial maximum. This species presents an original number of chromosomes (2n = 24) and morphological traits suggestive of a hybrid origin. METHODS: We sequenced a plastid locus and 1077 double-digest restriction-site-associated DNA (ddRAD) loci in 67 individuals from across the distribution range of P. helvetica and candidate progenitor species growing in the same area. Assignment of genotypes to main genetic clusters within and among taxa using STRUCTURE tested whether P. helvetica represents a genetically differentiated lineage and addressed the hypothesis of its hybrid origin. Comparative ecological modelling further addressed possible niche differentiation among taxa. KEY RESULTS: Pulmonaria helvetica was highlighted as a genetically homogeneous species distinct from co-occurring taxa. Consistent with a scenario of hybrid speciation, it presented clear evidence of balanced admixture between Pulmonaria officinalis (2n = 16) and Pulmonaria mollis s.l. (2n = 18, 22), which was also highlighted as a maternal progenitor based on plastid sequences. Limited genetic structure within the maternal progenitor is consistent with an origin of P. helvetica through either homoploid hybridization with considerable karyotype changes or via complex scenarios of allopolyploidy involving a dysploid taxon of P. mollis s.l. Comparative niche modelling indicated non-significant ecological differences between P. helvetica and its progenitors, supporting intrinsic factors resulting from hybridization as main drivers of speciation. CONCLUSIONS: Hybridization appears as a major process having promoted the postglacial origin of the narrow endemic P. helvetica, suggesting hybrid speciation as an effective process that rapidly produces new species under climate changes.


Subject(s)
Pulmonaria , Ecosystem , Genetic Speciation , Hybridization, Genetic , Switzerland
10.
Ecol Lett ; 23(4): 663-673, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32012420

ABSTRACT

Underpinnings of the distribution of allopolyploid species (hybrids with duplicated genome) along spatial and ecological gradients are elusive. As allopolyploid speciation combines the range of genetic and ecological characteristics of divergent diploids, allopolyploids initially show their additivity and are predicted to evolve differentiated ecological niches to establish in face of their competition. Here, we use four diploid wild wheats that differentially combined into four independent allopolyploid species to test for such additivity and assess the impact of ecological constraints on species ranges. Divergent genetic variation from diploids being fixed in heterozygote allopolyploids supports their genetic additivity. Spatial integration of comparative phylogeography and modelling of climatic niches supports ecological additivity of locally adapted diploid progenitors into allopolyploid species which subsequently colonised wide ranges. Allopolyploids fill suitable range to a larger extent than diploids and conservative evolution following the combination of divergent species appears to support their expansion under environmental changes.


Subject(s)
Diploidy , Triticum , Ecosystem , Humans , Phylogeography , Polyploidy
11.
New Phytol ; 226(5): 1263-1273, 2020 06.
Article in English | MEDLINE | ID: mdl-31913521

ABSTRACT

The wheat group offers an outstanding system to address the interplay between hybridization, chromosomal evolution and biological diversification. Most diploid wild wheats originated following hybridization between the A-genome lineage and the B-genome lineage some 4 Myr ago, resulting in an admixed D-genome lineage that presented dramatic radiation accompanied by considerable changes in genome size and chromosomal rearrangements. Comparative profiling of low-copy genes, repeated sequences and transposable elements among those divergent species characterized by different karyotypes highlights high genome dynamics and sheds new light on the processes underlying chromosomal evolution in wild wheats. One of the hybrid clades presents upsizing of metacentric chromosomes going along with the proliferation of specific repeats (i.e. 'genomic obesity'), whereas other species show stable genome size associated with increasing chromosomal asymmetry. Genetic and ecological variation in those specialized species suggest that genome restructuring was coupled with adaptive processes to support the evolution of a majority of acrocentric chromosomes. This synthesis of current knowledge on genome restructuring across the diversity of wild wheats paves the way towards surveys based on latest sequencing technologies to characterize valuable resources and address the significance of chromosomal evolution in species with complex genomes.


Subject(s)
Hybridization, Genetic , Triticum , DNA Transposable Elements , Diploidy , Genome, Plant/genetics , Karyotype , Triticum/genetics
12.
Proc Natl Acad Sci U S A ; 116(46): 23174-23181, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31659056

ABSTRACT

Plants defend themselves against herbivores through the production of toxic and deterrent metabolites. Adapted herbivores can tolerate and sometimes sequester these metabolites, allowing them to feed on defended plants and become toxic to their own enemies. Can herbivore natural enemies overcome sequestered plant defense metabolites to prey on adapted herbivores? To address this question, we studied how entomopathogenic nematodes cope with benzoxazinoid defense metabolites that are produced by grasses and sequestered by a specialist maize herbivore, the western corn rootworm. We find that nematodes from US maize fields in regions in which the western corn rootworm was present over the last 50 y are behaviorally and metabolically resistant to sequestered benzoxazinoids and more infective toward the western corn rootworm than nematodes from other parts of the world. Exposure of a benzoxazinoid-susceptible nematode strain to the western corn rootworm for 5 generations results in higher behavioral and metabolic resistance and benzoxazinoid-dependent infectivity toward the western corn rootworm. Thus, herbivores that are exposed to a plant defense sequestering herbivore can evolve both behavioral and metabolic resistance to plant defense metabolites, and these traits are associated with higher infectivity toward a defense sequestering herbivore. We conclude that plant defense metabolites that are transferred through adapted herbivores may result in the evolution of resistance in herbivore natural enemies. Our study also identifies plant defense resistance as a potential target for the improvement of biological control agents.


Subject(s)
Benzoxazines/metabolism , Coleoptera/parasitology , Herbivory , Host-Parasite Interactions , Rhabditida/physiology , Animals , Coleoptera/metabolism , Food Chain , Zea mays
13.
Mol Phylogenet Evol ; 139: 106554, 2019 10.
Article in English | MEDLINE | ID: mdl-31288105

ABSTRACT

Evolutionary relationships among the Aegilops-Triticum relatives of cultivated wheats have been difficult to resolve owing to incomplete lineage sorting and reticulate evolution. Recent studies have suggested that the wheat D-genome lineage (progenitor of Ae. tauschii) originated through homoploid hybridization between the A-genome lineage (progenitor of Triticum s.str.) and the B-genome lineage (progenitor of Ae. speltoides). This scenario of reticulation has been debated, calling for adequate phylogenetic analyses based on comprehensive sampling. To reconstruct the evolution of Aegilops-Triticum diploids, we here combined high-throughput sequencing of 38 nuclear low-copy loci of multiple accessions of all 13 species with inferences of the species phylogeny using the full-parameterized MCMC_SEQ method. Phylogenies recovered a monophyletic Aegilops-Triticum lineage that began diversifying ~6.6 Ma ago and gave rise to four sublineages, i.e. the A- (2 species), B- (1 species), D- (9 species) and T- (Ae. mutica) genome lineage. Full-parameterized phylogenies as well as patterns of tree dilation and tree compression supported a hybrid origin of the D-genome lineage from A and B ~3.0-4.0 Ma ago, and did not indicate additional hybridization events. Conflicting ABBA-BABA tests suggestive of further reticulation were shown here to result from ancestral population structure rather than hybridization. This comprehensive and dated phylogeny of wheat relatives indicates that the origin of the hybrid D-genome was followed by intense diversification into the majority of extant diploid as well as allopolyploid wild wheats.


Subject(s)
Biological Evolution , Diploidy , Hybridization, Genetic , Triticum/genetics , Cell Nucleus/genetics , Genome, Plant , Phylogeny , Species Specificity
14.
Proc Natl Acad Sci U S A ; 116(10): 4416-4425, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30787193

ABSTRACT

A fundamental tenet of multicellular eukaryotic evolution is that vertical inheritance is paramount, with natural selection acting on genetic variants transferred from parents to offspring. This lineal process means that an organism's adaptive potential can be restricted by its evolutionary history, the amount of standing genetic variation, and its mutation rate. Lateral gene transfer (LGT) theoretically provides a mechanism to bypass many of these limitations, but the evolutionary importance and frequency of this process in multicellular eukaryotes, such as plants, remains debated. We address this issue by assembling a chromosome-level genome for the grass Alloteropsis semialata, a species surmised to exhibit two LGTs, and screen it for other grass-to-grass LGTs using genomic data from 146 other grass species. Through stringent phylogenomic analyses, we discovered 57 additional LGTs in the A. semialata nuclear genome, involving at least nine different donor species. The LGTs are clustered in 23 laterally acquired genomic fragments that are up to 170 kb long and have accumulated during the diversification of Alloteropsis. The majority of the 59 LGTs in A. semialata are expressed, and we show that they have added functions to the recipient genome. Functional LGTs were further detected in the genomes of five other grass species, demonstrating that this process is likely widespread in this globally important group of plants. LGT therefore appears to represent a potent evolutionary force capable of spreading functional genes among distantly related grass species.


Subject(s)
DNA, Plant/genetics , Gene Transfer, Horizontal , Genes, Plant , Poaceae/genetics , Chromosomes, Plant , Phylogeny , Poaceae/classification
15.
Mol Ecol Resour ; 19(3): 773-787, 2019 May.
Article in English | MEDLINE | ID: mdl-30636378

ABSTRACT

Advances in high-throughput sequencing have promoted the collection of reference genomes and genome-wide diversity. However, the assessment of genomic variation among populations has hitherto mainly been surveyed through single-nucleotide polymorphisms (SNPs) and largely ignored the often major fraction of genomes represented by transposable elements (TEs). Despite accumulating evidence supporting the evolutionary significance of TEs, comprehensive surveys remain scarce. Here, we sequenced the full genomes of 304 individuals of Arabis alpina sampled from four nearby natural populations to genotype SNPs as well as polymorphic long terminal repeat retrotransposons (polymorphic TEs; i.e., presence/absence of TE insertions at specific loci). We identified 291,396 SNPs and 20,548 polymorphic TEs, comparing their contributions to genomic diversity and divergence across populations. Few SNPs were shared among populations and overall showed high population-specific variation, whereas most polymorphic TEs segregated among populations. The genomic context of these two classes of variants further highlighted candidate adaptive loci having a putative impact on functional genes. In particular, 4.96% of the SNPs were identified as nonsynonymous or affecting start/stop codons. In contrast, 43% of the polymorphic TEs were present next to Arabis genes enriched in functional categories related to the regulation of reproduction and responses to biotic as well as abiotic stresses. This unprecedented data set, mapping variation gained from SNPs and complementary polymorphic TEs within and among populations, will serve as a rich resource for addressing microevolutionary processes shaping genome variation.


Subject(s)
Arabis/classification , Arabis/genetics , Genetic Variation , Genome, Plant , Retroelements , Computational Biology , Genotype , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA , Whole Genome Sequencing
16.
Mol Ecol ; 28(6): 1550-1562, 2019 03.
Article in English | MEDLINE | ID: mdl-30633406

ABSTRACT

Recombination and selection drive the extent of linkage disequilibrium (LD) among loci and therefore affect the reshuffling of adaptive genetic variation. However, it is poorly known to what extent the enrichment of transposable elements (TEs) in recombinationally-inert regions reflects their inefficient removal by purifying selection and whether the presence of polymorphic TEs can modify the local recombination rate. In this study, we investigate how TEs and recombination interact at fine scale along chromosomes and possibly support linked selection in natural populations. Whole-genome sequencing data of 304 individuals from nearby alpine populations of Arabis alpina were used to show that the density of polymorphic TEs is specifically correlated with local LD along chromosomes. Consistent with TEs modifying recombination, the characterization of 28 such LD blocks of up to 5.5 Mb in length revealed strong evidence of selective sweeps at a few loci through either site frequency spectrum or haplotype structure. A majority of these blocks were enriched in genes related to ecologically relevant functions such as responses to cold, salt stress or photoperiodism. In particular, the S-locus (i.e., supergene responsible for strict outcrossing) was identified in a LD block with high levels of polymorphic TEs and evidence of selection. Another such LD block was enriched in cold-responding genes and presented evidence of adaptive loci related to photoperiodism and flowering being increasingly linked by polymorphic TEs. These results are consistent with the hypothesis that TEs modify recombination landscapes and thus interact with selection in driving blocks of linked adaptive loci in natural populations.


Subject(s)
DNA Transposable Elements/genetics , Linkage Disequilibrium/genetics , Recombination, Genetic , Selection, Genetic/genetics , Chromosomes/genetics , Haplotypes/genetics , Humans , Polymorphism, Genetic , Polymorphism, Single Nucleotide/genetics
17.
New Phytol ; 221(3): 1619-1633, 2019 02.
Article in English | MEDLINE | ID: mdl-30220091

ABSTRACT

The genomic shock hypothesis suggests that allopolyploidy is associated with genome changes driven by transposable elements, as a response to imbalances between parental insertion loads. To explore this hypothesis, we compared three allotetraploids, Nicotiana arentsii, N. rustica and N. tabacum, which arose over comparable time frames from hybridisation between increasingly divergent diploid species. We used sequence-specific amplification polymorphism (SSAP) to compare the dynamics of six transposable elements in these allopolyploids, their diploid progenitors and in corresponding synthetic hybrids. We show that element-specific dynamics in young Nicotiana allopolyploids reflect their dynamics in diploid progenitors. Transposable element mobilisation is not concomitant with immediate genome merger, but occurs within the first generations of allopolyploid formation. In natural allopolyploids, such mobilisations correlate with imbalances in the repeat profile of the parental species, which increases with their genetic divergence. Other restructuring leading to locus loss is immediate, nonrandom and targeted at specific subgenomes, independently of cross orientation. The correlation between transposable element mobilisation in allopolyploids and quantitative imbalances in parental transposable element loads supports the genome shock hypothesis proposed by McClintock.


Subject(s)
DNA Transposable Elements/genetics , Hybridization, Genetic , Nicotiana/genetics , Polyploidy , Base Sequence , Genetic Loci , Genetic Variation , Phylogeny
18.
Ecol Evol ; 8(3): 1794-1806, 2018 02.
Article in English | MEDLINE | ID: mdl-29435254

ABSTRACT

Plant species are known to adapt locally to their environment, particularly in mountainous areas where conditions can vary drastically over short distances. The climate of such landscapes being largely influenced by topography, using fine-scale models to evaluate environmental heterogeneity may help detecting adaptation to micro-habitats. Here, we applied a multiscale landscape genomic approach to detect evidence of local adaptation in the alpine plant Biscutella laevigata. The two gene pools identified, experiencing limited gene flow along a 1-km ridge, were different in regard to several habitat features derived from a very high resolution (VHR) digital elevation model (DEM). A correlative approach detected signatures of selection along environmental gradients such as altitude, wind exposure, and solar radiation, indicating adaptive pressures likely driven by fine-scale topography. Using a large panel of DEM-derived variables as ecologically relevant proxies, our results highlighted the critical role of spatial resolution. These high-resolution multiscale variables indeed indicate that the robustness of associations between genetic loci and environmental features depends on spatial parameters that are poorly documented. We argue that the scale issue is critical in landscape genomics and that multiscale ecological variables are key to improve our understanding of local adaptation in highly heterogeneous landscapes.

19.
Mol Ecol ; 26(18): 4587-4590, 2017 09.
Article in English | MEDLINE | ID: mdl-28949090

ABSTRACT

Studying hybridization has the potential to elucidate challenging questions in evolutionary biology such as the nature of adaptive genetic variation and reproductive isolation. A growing body of work highlights that the merging of divergent genomes goes beyond the reshuffling of standing variation from related species and promotes mutations (Abbott et al., ). However, to what extent such genome instability generates evolutionary significant variation remains largely elusive. In this issue of Molecular Ecology, Dennenmoser et al. () report considerable dynamics of transposable elements (TEs) in a recent invasive fish species of hybrid origin (Cottus; Figure ). It adds to the recent examples from plants to support TE-specific genome variation following hybridization. Insights from early, as well as established, hybrids are largely coherent with increased TE activity, and this fish system thus represents an inspiring opportunity to further address the possible association between genome dynamics and "rapid evolution of hybrid species." This work based on genome (re)sequencing contrasts with prior transcriptomics or PCR-based studies of TEs and illustrates how unprecedented amount of information promises a better understanding of the multiple patterns of variation across eukaryotic genomes; provided that we get the better of methodological advances. As discussed here, unbiased assessment of TE variation from genome surveys indeed remains a challenge precluding firm conclusions to be reached about the evolutionary significance of TEs. Despite methodological and conceptual developments that appear necessary to unambiguously uncover the unexplored iceberg below the known tip, the role of coding genes vs. TEs in promoting adaptation and speciation might be clarified in a not so remote future.


Subject(s)
DNA Copy Number Variations , DNA Transposable Elements , Animals , Evolution, Molecular , Genomics , Plants/genetics
20.
Plant J ; 90(5): 979-993, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28244250

ABSTRACT

Transposable elements support genome diversification, but comparison of their proliferation and genomic distribution within and among species is necessary to characterize their role in evolution. Such inferences are challenging because of potential bias with incomplete sampling of repetitive genome regions. Here, using the assembled genome as well as genome skimming datasets in Arabis alpina, we assessed the limits of current approaches inferring the biology of transposable elements. Long terminal repeat retrotransposons (LTR-RTs) identified in the assembled genome were classified into monophyletic lineages (here called tribes), including families of similar copies in Arabis along with elements from related Brassicaceae. Inference of their dynamics using divergence of LTRs in full-length copies and mismatch distribution of genetic variation among all copies congruently highlighted recent transposition bursts, although ancient proliferation events were apparent only with mismatch distribution. Similar inferences of LTR-RT dynamics based on random sequences from genome skimming were highly correlated with assembly-based estimates, supporting accurate analyses from shallow sequencing. Proportions of LTR-RT copies next to genes from both assembled genomes and genome skimming were congruent, pointing to tribes being over- or under-represented in the vicinity of genes. Finally, genome skimming at low coverage revealed accurate inferences of LTR-RT dynamics and distribution, although only the most abundant families appeared robustly analysed at 0.1X. Examining the pitfalls and benefits of approaches relying on different genomic resources, we highlight that random sequencing reads represent adequate data suitably complementing biased samples of LTR-RT copies retrieved from assembled genomes towards comprehensive surveys of the biology of transposable elements.


Subject(s)
Genome, Plant/genetics , Retroelements/genetics , Terminal Repeat Sequences/genetics , DNA Transposable Elements/genetics , Evolution, Molecular , Genetic Variation/genetics , Genomics , Phylogeny , Plant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...