Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(3): e0229943, 2020.
Article in English | MEDLINE | ID: mdl-32142527

ABSTRACT

Cassava (Manihot esculenta Crantz) is an important food security crop in many parts of the developing world. The crop's high yield potential and multitude of uses-both for nutrition and processing-render cassava a promising driver for the development of rural value chains. It is traditionally propagated from stem cuttings of up to 30 cm in length, giving a multiplication rate as low as 1:10. Propagating cassava traditionally is very inefficient, which leads to challenges in the production and distribution of quality planting material and improved cultivars, greatly limiting the impact of investments in crop breeding. The work described in the present study aimed to develop a seed treatment approach to facilitate the use of shorter seed pieces, increasing the multiplication rate of cassava and thus making the crop's seed systems more efficient. After several tests, formulation was identified, consisting of thiamethoxam 21 g ha-1, mefenoxam 1.0 g ha-1, fludioxonil 1.3 g ha-1, thiabendazole 7.5 g ha-1 and Latex 2% as a binder. Plant growing from seed pieces treated with this formulation displayed increased crop establishment and early crop vigor, leading to an improved productivity throughout a full growing cycle. This allowed to reduce the cassava seed piece size to 8 cm with no negative effects on germination and crop establishment, leading to yields comparable to those from untreated 16 cm pieces. This, in turn, will allow to increase the multiplication ratio of cassava by a factor of up to 3. Notably, this was possible under regular field conditions and independently of any specialised treatment facilities. Compared with existing seed production protocols, the increased multiplication rates allowed for efficiency gains of between 1 to 1.9 years compared to conventional five-year cycles. We believe that the technology described here holds considerable promise for developing more reliable and remunerative delivery channels for quality cassava planting material and improved genetics.


Subject(s)
Manihot/growth & development , Plant Breeding , Plant Stems/growth & development , Seeds/growth & development , Alanine/analogs & derivatives , Alanine/pharmacology , Dioxoles/pharmacology , Latex/pharmacology , Manihot/drug effects , Plant Stems/drug effects , Pyrroles/pharmacology , Seeds/drug effects , Thiabendazole/pharmacology , Thiamethoxam/pharmacology
2.
Crop Sci ; 59(2): 460-473, 2019.
Article in English | MEDLINE | ID: mdl-33343017

ABSTRACT

Cassava (Manihot esculenta Crantz) is a major source of dietary carbohydrates for >700 million people globally. However, its long breeding cycle has slowed the rate of genetic gain for target traits. This study aimed to asses genetic variation, the level of inbreeding, and trait correlations in genomic selection breeding cycles. We used phenotypic and genotypic data from the National Crops Resources Research Institute (NaCRRI) foundation population (Cycle 0, C0) and the progeny (Cycle 1, C1) derived from crosses of 100 selected C0 clones as progenitors, both to evaluate and optimize genomic selection. The highest broad-sense heritability (H 2 = 0.95) and narrow-sense heritability (h 2 = 0.81) were recorded for cassava mosaic disease severity and the lowest for root weight per plot (H 2 = 0.06 and h 2 = 0.00). We observed the highest genetic correlation (r g= 0.80) between cassava brown streak disease root incidence measured at seedling and clonal stages of evaluation, suggesting the usefulness of seedling data in predicting clonal performance for cassava brown streak root necrosis. Similarly, high genetic correlations were observed between cassava brown streak disease severity (r g= 0.83) scored at 3 and 6 mo after planting (MAP) and cassava mosaic disease, scored at 3 and 6 MAP (r g= 0.95), indicating that data obtained on these two diseases at 6 MAP would suffice. Population differentiation between C0 and C1 was not well defined, implying that the 100 selected progenitors of C1 captured the diversity in the C0. Overall, genetic gain for most traits were observed from C0 to C1.

3.
PLoS Comput Biol ; 13(7): e1005654, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28746374

ABSTRACT

Trade or sharing that moves infectious planting material between farms can, for vertically-transmitted plant diseases, act as a significant force for dispersal of pathogens, particularly where the extent of material movement may be greater than that of infected vectors or inoculum. The network over which trade occurs will then effect dispersal, and is important to consider when attempting to control the disease. We consider the difference that planting material exchange can make to successful control of cassava brown streak disease, an important viral disease affecting one of Africa's staple crops. We use a mathematical model of smallholders' fields to determine the effect of informal trade on both the spread of the pathogen and its control using clean-seed systems, determining aspects that could limit the damage caused by the disease. In particular, we identify the potentially detrimental effects of markets, and the benefits of a community-based approach to disease control.


Subject(s)
Crops, Agricultural , Host-Pathogen Interactions , Plant Diseases , Computational Biology , Farms , Plant Diseases/prevention & control , Plant Diseases/virology , Seeds/virology
4.
Breed Sci ; 66(4): 560-571, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27795681

ABSTRACT

Cassava (Manihot esculenta Crantz) production is currently under threat from cassava brown streak disease (CBSD), a disease that is among the seven most serious obstacles to world's food security. Three issues are of significance for CBSD. Firstly, the virus associated with CBSD, has co-evolved with cassava outside its center of origin for at least 90 years. Secondly, that for the last 74 years, CBSD was only limited to the low lands. Thirdly, that most research has largely focused on CBSD epidemiology and virus diversity. Accordingly, this paper focuses on CBSD genetics and/or breeding and hence, presents empirical data generated in the past 11 years of cassava breeding in Uganda. Specifically, this paper provides: 1) empirical data on CBSD resistance screening efforts to identify sources of resistance and/or tolerance; 2) an update on CBSD resistance population development comprising of full-sibs, half-sibs and S1 families and their respective field performances; and 3) insights into chromosomal regions and genes involved in CBSD resistance based on genome wide association analysis. It is expected that this information will provide a foundation for harmonizing on-going CBSD breeding efforts and consequently, inform the future breeding interventions aimed at combating CBSD.

SELECTION OF CITATIONS
SEARCH DETAIL
...