Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 8(8): 4197-4208, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29721291

ABSTRACT

The foundational concept of habitat lies at the very root of the entire science of ecology, but inaccurate use of the term compromises scientific rigor and communication among scientists and nonscientists. In 1997, Hall, Krausman & Morrison showed that 'habitat' was used correctly in only 55% of articles. We ask whether use of the term has been more accurate since their plea for standardization and whether use varies across the broader range of journals and taxa in the contemporary literature (1998-2012). We searched contemporary literature for 'habitat' and habitat-related terms, ranking usage as either correct or incorrect, following a simplified version of Hall et al.'s definitions. We used generalized linear models to compare use of the term in contemporary literature with the papers reviewed by Hall et al. and to test the effects of taxa, journal impact in the contemporary articles and effects due to authors that cited Hall et al. Use of the term 'habitat' has not improved; it was still only used correctly about 55% of the time in the contemporary data. Proportionately more correct uses occurred in articles that focused on animals compared to ones that included plants, and papers that cited Hall et al. did use the term correctly more often. However, journal impact had no effect. Some habitat terms are more likely to be misused than others, notably 'habitat type', usually used to refer to vegetation type, and 'suitable habitat' or 'unsuitable habitat', which are either redundant or nonsensical by definition. Inaccurate and inconsistent use of the term can lead to (1) misinterpretation of scientific findings; (2) inefficient use of conservation resources; (3) ineffective identification and prioritization of protected areas; (4) limited comparability among studies; and (5) miscommunication of science-based findings. Correct usage would improve communication with scientists and nonscientists, thereby benefiting conservation efforts, and ecology as a science.

2.
Evol Appl ; 10(10): 1076-1090, 2017 12.
Article in English | MEDLINE | ID: mdl-29151862

ABSTRACT

White-nose syndrome (WNS) has devastated populations of hibernating bats in eastern North America, leading to emergency conservation listings for several species including the previously ubiquitous little brown myotis (Myotis lucifugus). However, some bat populations near the epicenter of the WNS panzootic appear to be stabilizing after initial precipitous declines, which could reflect a selective immunogenetic sweep. To investigate the hypothesis that WNS exerts significant selection on the immunome of affected bat populations, we developed a novel, high-throughput sequence capture assay targeting 138 adaptive, intrinsic, and innate immunity genes of putative adaptive significance, as well as their respective regulatory regions (~370 kbp of genomic sequence/individual). We used the assay to explore baseline immunogenetic variation in M. lucifugus and to investigate whether particular immune genes/variants are associated with WNS susceptibility. We also used our assay to detect 1,038 putatively neutral single nucleotide polymorphisms and characterize contemporary population structure, providing context for the identification of local immunogenetic adaptation. Sequence capture provided a cost-effective, "all-in-one" assay to test for neutral genetic and immunogenetic structure and revealed fine-scale, baseline immunogenetic differentiation between sampling sites <600 km apart. We identified functional immunogenetic variants in M. lucifugus associated with WNS susceptibility. This study lays the foundations for future investigations of rangewide immunogenetic adaptation to WNS in M. lucifugus and provides a blueprint for studies of evolutionary rescue in other host-pathogen systems.

3.
J Wildl Dis ; 52(4): 902-906, 2016 10.
Article in English | MEDLINE | ID: mdl-27458830

ABSTRACT

Big brown bats ( Eptesicus fuscus ) overwintering outside the underground environment are not believed to play a role in the epidemiology of the disease white-nose syndrome (WNS), caused by the fungus Pseudogymnoascus destructans (Pd). Using quantitative real-time PCR (qPCR), we provide molecular evidence for Pd on four big brown bats overwintering in heated buildings in New Brunswick, Canada. Two of the affected individuals also had very mild, focal, pustular, fungal dermatitis identified microscopically. A third bat, which was qPCR Pd-negative, had similar fungal lesions. Despite determining that these fungal lesions were caused by a suspected ascomycete, the intralesional fungi were not confirmed to be Pd. These findings demonstrate that bats overwintering in heated buildings and other above-ground sites may have subclinical or preclinical WNS, or be contaminated with Pd, and could play a role in local dispersal of Pd. Our inability to determine if the ascomycetes causing pustular lesions were Pd highlights the need for ancillary diagnostic tests, such as in situ hybridization or immunohistochemistry, so that Pd can be detected directly within a lesion. As the host-pathogen relationship for Pd evolves, and where bat species are exposed to the fungus under varying temperature regimes, lesions may become less stereotypic and such tests could help define these changes.


Subject(s)
Ascomycota/pathogenicity , Chiroptera/microbiology , Dermatitis/veterinary , Animals , Ascomycota/isolation & purification , Canada , New Brunswick
SELECTION OF CITATIONS
SEARCH DETAIL
...