Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nanomicro Lett ; 15(1): 76, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36976370

ABSTRACT

Although there is a high demand for absorption-dominant electromagnetic interference (EMI) shielding materials for 5G millimeter-wave (mmWave) frequencies, most current shielding materials are based on reflection-dominant conductive materials. While there are few absorption-dominant shielding materials proposed with magnetic materials, their working frequencies are usually limited to under 30 GHz. In this study, a novel multi-band absorption-dominant EMI shielding film with M-type strontium ferrites and a conductive grid is proposed. This film shows ultralow EMI reflection of less than 5% in multiple mmWave frequency bands with sub-millimeter thicknesses, while shielding more than 99.9% of EMI. The ultralow reflection frequency bands are controllable by tuning the ferromagnetic resonance frequency of M-type strontium ferrites and composite layer geometries. Two examples of shielding films with ultralow reflection frequencies, one for 39 and 52 GHz 5G telecommunication bands and the other for 60 and 77 GHz autonomous radar bands, are presented. The remarkably low reflectance and thinness of the proposed films provide an important advancement toward the commercialization of EMI shielding materials for 5G mmWave applications.

2.
Small Methods ; 7(7): e2201719, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36960927

ABSTRACT

Wearable electronic devices with next-generation biocompatible, mechanical, ultraflexible, and portable sensors are a fast-growing technology. Hardware systems enabling artificial neural networks while consuming low power and processing massive in situ personal data are essential for adaptive wearable neuromorphic edging computing. Herein, the development of an ultraflexible artificial-synaptic array device with concrete-mechanical cyclic endurance consisting of a novel heterostructure with an all-solid-state 2D MoS2 channel and LiSiOx (lithium silicate) is demonstrated. Enabled by the sequential fabrication process of all layers, by excluding the transfer process, artificial van der Waals devices combined with the 2D-MoS2 channel and LiSiOx solid electrolyte exhibit excellent neuromorphic synaptic characteristics with a nonlinearity of 0.55 and asymmetry ratio of 0.22. Based on the excellent flexibility of colorless polyimide substrates and thin-layered structures, the fabricated flexible neuromorphic synaptic devices exhibit superior long-term potentiation and long-term depression cyclic endurance performance, even when bent over 700 times or on curved surfaces with a diameter of 10 mm. Thus, a high classification accuracy of 95% is achieved without any noticeable performance degradation in the Modified National Institute of Standards and Technology. These results are promising for the development of personalized wearable artificial neural systems in the future.

3.
ACS Appl Mater Interfaces ; 14(47): 53038-53047, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36394301

ABSTRACT

High-precision artificial synaptic devices compatible with existing CMOS technology are essential for realizing robust neuromorphic hardware systems with reliable parallel analogue computation beyond the von Neumann serial digital computing architecture. However, critical issues related to reliability and variability, such as nonlinearity and asymmetric weight updates, have been great challenges in the implementation of artificial synaptic devices in practical neuromorphic hardware systems. Herein, a robust three-terminal two-dimensional (2D) MoS2 artificial synaptic device combined with a lithium silicate (LSO) solid-state electrolyte thin film is proposed. The rationally designed synaptic device exhibits excellent linearity and symmetry upon electrical potentiation and depression, benefiting from the reversible intercalation of Li ions into the MoS2 channel. In particular, extremely low cycle-to-cycle variations (3.01%) during long-term potentiation and depression processes over 500 pulses are achieved, causing statistical analogue discrete states. Thus, a high classification accuracy of 96.77% (close to the software baseline of 98%) is demonstrated in the Modified National Institute of Standards and Technology (MNIST) simulations. These results provide a future perspective for robust synaptic device architecture of lithium solid-state electrolytes stacked with 2D van der Waals layered channels for high-precision analogue neuromorphic computing systems.

4.
Chem Commun (Camb) ; 58(81): 11442-11445, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36148584

ABSTRACT

A simple, scalable spray drying method was developed for high-yield epsilon iron oxide (ε-Fe2O3) synthesis. The ε-Fe2O3 particle size can be tailored by varying the annealing temperature and molar ratio of Fe/Si, producing a high-purity ε-phase. This strategy also enables ferromagnetic resonance tuning, making it potentially usable in millimeter-wave absorbers.

5.
ACS Appl Mater Interfaces ; 14(34): 39255-39264, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35975758

ABSTRACT

Electromagnetic wave (EMW)-absorbing materials, manufactured with composites of magnetic particles, are essential for maintaining a high complex permeability and modulated permittivity for impedance matching. However, commonly available EMW-absorbing materials are unsatisfactory owing to their low complex permeability in the high-frequency band. Herein, we report a thin, flexible EMW-absorbing membrane comprising shape-modulated FeCo nanobelts/boron nitride nanoparticles, which enables enhanced complex permeability in the S, C, and X bands (2-12 GHz). The boron nitride nanoparticles that are introduced to the FeCo nanobelts demonstrate control of the complex permittivity, leading to an effective impedance matching close to 1, consequently resulting in a high reflection loss value of -42.2 dB at 12.0 GHz with only 1.6 mm thickness. In addition, the incorporation of boron nitride nanoparticles improves the thermal conductivity for the heat dissipation of the absorbed electromagnetic wave energy. Overall, the comprehensive study of nanomaterial preparation and shape modulation technologies can lead to the fabrication of an excellent EMW-absorbing flexible composite membrane.

6.
Nanoscale ; 13(27): 12004-12016, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34212957

ABSTRACT

Herein, we introduce novel 1-dimensional nano-chained FeCo particles with unusually-high permeability prepared by a highly-productive thermal plasma synthesis and demonstrate an electromagnetic wave absorber with exceptionally low reflection loss in the high-frequency regime (1-26 GHz). During the thermal plasma synthesis, spherical FeCo nanoparticles are first formed through the nucleation and growth processes; then, the high temperature zone of the thermal plasma accelerates the diffusion of constituent elements, leading to surface-consolidation between the particles at the moment of collision, and 1-dimensional nano-chained particles are successfully fabricated without the need for templates or a complex directional growth process. Systematic control over the composition and magnetic properties of FexCo1-x nano-chained particles also has been accomplished by changing the mixing ratio of the Fe-to-Co precursors, i.e. from 7 : 3 to 3 : 7, leading to a remarkably high saturation magnetization of 151-227 emu g-1. In addition, a precisely-controlled and uniform surface SiO2 coating on the FeCo nano-chained particles was found to effectively modulate complex permittivity. Consequently, a composite electromagnetic wave absorber comprising Fe0.6Co0.4 nano-chained particles with 2.00 nm-thick SiO2 surface insulation exhibits dramatically intensified permeability, thereby improving electromagnetic absorption performance with the lowest reflection loss of -43.49 dB and -10 dB (90% absorbance) bandwidth of 9.28 GHz, with a minimum thickness of 0.85 mm.

7.
ACS Appl Mater Interfaces ; 12(45): 50803-50811, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33135419

ABSTRACT

Fiber strain sensors that are directly woven into smart textiles play an important role in wearable systems. These sensors require a high sensitivity to detect the subtle strain in practical applications. However, traditional fiber strain sensors with constant diameters undergo homogeneous strain distribution in the axial direction, thereby limiting the sensitivity improvement. Herein, a novel strategy of internal or external structural design is proposed to significantly improve the sensitivity of fiber strain sensors. The fibers are produced with directional increases in diameter (internal design) or polydimethylsiloxane (PDMS) microbeads attached to surfaces (external design) by combining hollow glass tubes used as templates with PDMS drops. The structural modification of the fiber significantly impacts the sensing performance. After optimizing structural parameters, the highest gauge factor reaches 123.1 in the internal-external structure design at 25% strain. A comprehensive analysis reveals that the desirable scheme is the internal structural design, which features a high sensitivity of 110 with a 100% improvement at ∼5-20% strain. Because of the sufficiently robust interface, even at the 800th cycle, fiber sensors still possessed an excellent stable performance. The morphology evolution mechanism indicates that the resistance increase is closely related with the increased peak width and distance, and the appearance of gaps. Based on the finite element modeling simulation, the quantified effective contributions of different strategies positively correlate with the improved sensitivity. The proposed fiber strain sensors, which are woven into the two-dimensional network structure, exhibit an excellent capability for displacement monitoring and facilitate the traffic control of crossroads.

8.
Materials (Basel) ; 14(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383785

ABSTRACT

Carbon nanotube fiber (CNTF), prepared by the direct-spinning method, has several nanopores, and the infiltration behavior of resins into these nanopores could influence the mechanical properties of CNTF-based composites. In this work, we investigated the infiltration behavior of resin into the nanopores of the CNTFs and mechanical properties of the CNTF-based single-fiber composites using six epoxy resins with varying viscosities. Epoxy resins can be easily infiltrated into the nanopores of the CNTF; however, pores appear when a resin with significantly high or low viscosity is used in the preparation process of the composites. All the composite fibers exhibit lower load-at-break value compared to as-densified CNTF, which is an unexpected phenomenon. It is speculated that the bundle structure of the CNTF can undergo changes due to the high affinity between the epoxy and CNTF. As composite fibers containing pores exhibit an even lower load-at-break value, the removal of pores by the defoaming process is essential to enhance the mechanical properties of the composite fibers.

9.
Nanoscale ; 11(13): 5884-5890, 2019 Mar 28.
Article in English | MEDLINE | ID: mdl-30869716

ABSTRACT

Here, we report a novel highly sensitive wearable strain sensor based on a highly stretchable multi-walled carbon nanotube (MWCNT)/Thermoplastic Polyurethane (TPU) fiber obtained via a wet spinning process. The MWCNT/TPU fiber showed the highest tensile strength and ultra-high sensitivity with a gauge factor (GF) of approximately 2800 in the strain range of 5-100%. Due to its high strain sensitivity of conductivity, this CNT-reinforced composite fiber was able to be used to monitor the weight and shape of an object based on the 2D mapping of resistance changes. Moreover, the composite fiber was able to be stitched onto a highly stretchable elastic bandage using a sewing machine to produce a wearable strain sensor for the detection of diverse human motions. We also demonstrated the detection of finger motion by fabricating a smart glove at the joints. Due to its scalable production process, high stretchability and ultrasensitivity, the MWCNT/TPU fiber may open a new avenue for the fabrication of next-generation stretchable textile-based strain sensors.

10.
Ultrasonics ; 91: 121-128, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30096537

ABSTRACT

In this paper, the effect of ablation on the shape of elastic waves generated by laser excitation is studied numerically and experimentally. Laser-induced ultrasound has been widely used in the nondestructive testing (NDT) field because it has the advantage that the sensor does not have to be directly attached to the target structure. In the safety assessment process, low energy excitation is used, and thus the structure is not damaged. Most studies related to laser ultrasound have focused on the method of detecting cracks within the elastic range, and there have been few studies on the effect of ablation. This research consists of experiments and numerical analyses. In experiments, elastic waves were generated in an aluminum plate by projecting laser pulses with different energy intensities. The velocities in the thickness direction were measured using a Laser Doppler Velocimeter (LDV) at a point 135 mm away from the excitation point. In the numerical study, two numerical simulations were carried out using heat flux and normal stress input to mimic laser pulse excitation. A thermo-mechanical simulation by heat flux was conducted to simulate thermal expansion by the laser pulse, and the normal stress was applied to reflect the effect of radiation pressure by ablation, respectively. Waveforms were synthesized by using different magnitude ratios of the obtained numerical responses and were compared with the experiment results. It is found that the effect of radiation pressure should not be neglected if the energy intensity is large although the effect of radiation pressure decreases as the energy intensity decreases. At the energy intensity with which ablation occurs, the effects of thermal expansion and radiation pressure exist simultaneously, and the contribution to the response depends on the energy intensity.

11.
Materials (Basel) ; 10(12)2017 Dec 08.
Article in English | MEDLINE | ID: mdl-29292752

ABSTRACT

Adhesive bonded structures have been widely used in aerospace, automobile, and marine industries. Due to the complex nature of the failure mechanisms of bonded structures, cost-effective and reliable damage detection is crucial for these industries. Most of the common damage detection methods are not adequately sensitive to the presence of weakened bonding. This paper presents an experimental and analytical method for the in-situ detection of damage in adhesive-bonded structures. The method is fully non-contact, using air-coupled ultrasonic transducers (ACT) for ultrasonic wave generation and sensing. The uniqueness of the proposed method relies on accurate detection and localization of weakened bonding in complex adhesive bonded structures. The specimens tested in this study are parts of real-world structures with critical and complex damage types, provided by Hyundai Heavy Industries® and IKTS Fraunhofer®. Various transmitter and receiver configurations, including through transmission, pitch-catch scanning, and probe holder angles, were attempted, and the obtained results were analyzed. The method examines the time-of-flight of the ultrasonic waves over a target inspection area, and the spatial variation of the time-of-flight information was examined to visualize and locate damage. The proposed method works without relying on reference data obtained from the pristine condition of the target specimen. Aluminum bonded plates and triplex adhesive layers with debonding and weakened bonding were used to examine the effectiveness of the method.

SELECTION OF CITATIONS
SEARCH DETAIL
...