Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 11(2): e2305067, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37949679

ABSTRACT

Radiative cooling, a technology that lowers the temperature of terrestrial objects by dissipating heat into outer space, presents a promising ecologically-benign solution for sustainable cooling. Recent years witness substantial progress in radiative cooling technologies, bringing them closer to commercialization. This comprehensive review provides a structured overview of radiative cooling technologies, encompassing essential principles, fabrication techniques, and practical applications, with the goal of guiding researchers toward successful commercialization. The review begins by introducing the fundamentals of radiative cooling and the associated design strategies to achieve it. Then, various fabrication methods utilized for the realization of radiative cooling devices are thoroughly discussed. This discussion includes detailed assessments of scalability, fabrication costs, and performance considerations, encompassing both structural designs and fabrication techniques. Building upon these insights, potential fabrication approaches suitable for practical applications and commercialization are proposed. Further, the recent efforts made toward the practical applications of radiative cooling technology, including its visual appearance, switching capability, and compatibility are examined. By encompassing a broad range of topics, from fundamental principles to fabrication and applications, this review aims to bridge the gap between theoretical research and real-world implementation, fostering the advancement and widespread adoption of radiative cooling technology.

2.
Small ; 19(47): e2303749, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37480180

ABSTRACT

Metamolecule clusters support various unique types of artificial electromagnetism at optical frequencies. However, the technological challenges regarding the freeform fabrication of freestanding metamolecule clusters with programmed geometries and multiple compositions remain unresolved. Here, the freeform, freestanding raspberry-like metamolecule (RMM) fibers based on the directional guidance of a femtoliter meniscus are presented, resulting in the evaporative co-assembly of silica nanoparticles and gold nanoparticles with the aid of 3D nanoprinting. This method offers a facile and universal pathway to shape RMM fibers in 3D, enabling versatile manipulation of near- and far-field characteristics. In particular, the authors demonstrate the ability to decrease the scattering of the millimeter-scale RMM fiber in visible spectrum. In addition, the influence of electric and magnetic dipole modes on the directional scattering of RMM fibers is investigated. These experiments show that the magnetic response of an individual RMM can be controlled by adjusting the filling factor of gold nanoparticles. The authors anticipate that this method will allow for unrestricted design and realization of nanophotonic structures, surpassing the limitations of conventional fabrication processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...