Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Tissue Eng Regen Med ; 19(6): 1359-1376, 2022 12.
Article in English | MEDLINE | ID: mdl-36207661

ABSTRACT

BACKGROUND: Bone remodeling is tightly regulated through bone resorption and bone formation; imbalances in bone remodeling can cause various pathological conditions such as osteoporosis. Antiresorptive agents commonly used for treating osteoporosis do not substantially reverse osteoporotic bone loss. METHODS: We evaluated the effects of the RVYFFKGKQYWE motif (residues 270-281; VnP-16) of human vitronectin on the osteogenic differentiation of human mesenchymal stem cells (hMSCs) and osteoclastogenesis of bone marrow-derived macrophages. The effects of VnP-16 were also assessed in a mouse model of estrogen deficiency-induced osteoporosis (ovariectomized female C57BL/6 mice). To assay whether VnP-16 can reverse ovariectomy-induced bone loss, synthetic peptides or vehicle were subcutaneously injected into ovariectomized mice once a week for 4 weeks (n = 10/group). To evaluate the bone restorative effects of VnP-16, in-vivo micro-computed tomography analysis and histological staining were performed. RESULTS: VnP-16 induced osteogenic differentiation of hMSCs and inhibited the RANKL-RANK-TRAF6 axis in the osteoclastogenesis signaling pathway. Furthermore, systemic administration of VnP-16 reversed ovariectomy-induced bone loss in the femoral neck, distal femur and lumbar spine by increasing osteoblast differentiation and promoting bone formation, and concomitantly decreasing osteoclastogenesis and inhibiting bone resorption. The bone restorative effect of VnP-16 was observed one week after subcutaneous administration, and although the timing of the effect differed according to bone location, it persisted for at least 3 weeks. CONCLUSION: Our findings suggest that VnP-16 is a potential therapeutic agent for treating osteoporosis that mediates its effects through dual regulation of bone remodeling.


Subject(s)
Bone Resorption , Osteoporosis , Female , Mice , Humans , Animals , Vitronectin/metabolism , Vitronectin/pharmacology , Osteogenesis , Osteoclasts , X-Ray Microtomography , Mice, Inbred C57BL , Ovariectomy/adverse effects , Bone Remodeling , Bone Resorption/drug therapy , Bone Resorption/complications , Bone Resorption/metabolism , Osteoporosis/drug therapy , Peptides/pharmacology , Peptides/metabolism
2.
J Clin Periodontol ; 49(8): 799-813, 2022 08.
Article in English | MEDLINE | ID: mdl-35634689

ABSTRACT

AIM: This study investigated whether a vitronectin-derived peptide (VnP-16) prevents and/or reverses alveolar bone resorption induced by ligature-induced periodontitis in rodents and identified the underlying mechanism. MATERIALS AND METHODS: We evaluated the effects of VnP-16 on osteogenic differentiation in human periodontal ligament cells (hPDLCs), lipopolysaccharide-induced inflammatory responses in gingival fibroblasts, and immune response in T lymphocytes. Ligature-induced periodontitis was induced by ligating the bilateral mandibular first molars for 14 days in rats and for 7 days in mice (n = 10/group). VnP-16 (100 µg/10 µl) was applied topically into the gingival sulcus of rats via intra-sulcular injection, whereas the peptide (50 µg/5 µl) was administered directly into the gingiva of mice via intra-gingival injection. To evaluate the preventive and therapeutic effects of VnP-16, micro-computed tomography analysis and histological staining were then performed. RESULTS: VnP-16 promoted osteogenic differentiation of periodontal ligament cells and inhibited the production of lipopolysaccharide-induced inflammatory mediators in gingival fibroblasts. Concomitantly, VnP-16 modulated the host immune response by reducing the number of receptor activator of NF-κB ligand (RANKL)-expressing lipopolysaccharide-stimulated CD4+ and CD8+ T cells, and by suppressing RANKL and interleukin (IL)-17A production. Furthermore, local administration of VnP-16 in rats and mice significantly prevented and reversed alveolar bone loss induced by ligature-induced periodontitis. VnP-16 enhanced osteoblastogenesis and simultaneously inhibited osteoclastogenesis and suppressed RANKL and IL-17A expression in vivo. CONCLUSIONS: Our findings suggest that VnP-16 acts as a potent therapeutic agent for preventing and treating periodontitis by regulating bone re-modelling and immune and inflammatory responses.


Subject(s)
Alveolar Bone Loss , Periodontitis , Alveolar Bone Loss/drug therapy , Alveolar Bone Loss/prevention & control , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Humans , Interleukin-17/therapeutic use , Ligands , Lipopolysaccharides/pharmacology , Mice , NF-kappa B , Osteogenesis , Periodontitis/drug therapy , Periodontitis/metabolism , Periodontitis/prevention & control , RANK Ligand/metabolism , Rats , Vitronectin/therapeutic use , X-Ray Microtomography
3.
J Tissue Eng Regen Med ; 14(8): 1100-1112, 2020 08.
Article in English | MEDLINE | ID: mdl-32592615

ABSTRACT

We previously reported that the PPFEGCIWN motif (Ln2-LG3-P2-DN3), residues 2678-2686 of the human laminin α2 chain, promotes cell attachment of normal human epidermal keratinocytes (NHEKs) and dermal fibroblasts (NHDFs); however, its in vivo effects on cutaneous wound healing have not yet been examined. In this study, we sought to determine whether Ln2-LG3-P2-DN3 could promote full-thickness cutaneous wound healing by accelerating wound reepithelialization and wound closure in vivo. Ln2-LG3-P2-DN3 had significantly higher cell attachment and spreading activities than vehicle or scrambled peptide control in both NHEKs and NHDFs in vitro. The wound area was significantly smaller in rats treated with Ln2-LG3-P2-DN3 than in those treated with vehicle or scrambled peptide in the early phase of wound healing. Furthermore, Ln2-LG3-P2-DN3 significantly accelerated wound reepithelialization relative to vehicle or scrambled peptide and promoted FAK-Tyr397 phosphorylation and Rac1 activation. Collectively, our findings suggest that the PPFEGCIWN motif has potential as a therapeutic agent for cutaneous regeneration via the acceleration of wound reepithelization and wound closure.


Subject(s)
Focal Adhesion Kinase 1/metabolism , Guanosine Triphosphate/metabolism , Laminin/chemistry , Peptides , Wound Healing/drug effects , Wounds and Injuries , rac1 GTP-Binding Protein/metabolism , Amino Acid Motifs , Animals , Male , Peptides/chemistry , Peptides/pharmacology , Rats , Rats, Sprague-Dawley , Wounds and Injuries/metabolism , Wounds and Injuries/therapy
4.
Materials (Basel) ; 12(20)2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31627447

ABSTRACT

In this study, we evaluated early bone responses to a vitronectin-derived, minimal core bioactive peptide, RVYFFKGKQYWE motif (VnP-16), both in vitro and in vivo, when the peptide was treated on sandblasted, large-grit, acid-etched (SLA) titanium surfaces. Four surface types of titanium discs and of titanium screw-shaped implants were prepared: control, SLA, scrambled peptide-treated, and VnP-16-treated surfaces. Cellular responses, such as attachment, spreading, migration, and viability of human osteoblast-like HOS and MG63 cells were evaluated in vitro on the titanium discs. Using the rabbit tibia model with the split plot design, the implants were inserted into the tibiae of four New Zealand white rabbits. After two weeks of implant insertion, the rabbits were sacrificed, the undecalcified specimens were prepared for light microscopy, and the histomorphometric data were measured. Analysis of variance tests were used for the quantitative evaluations in this study. VnP-16 was non-cytotoxic and promoted attachment and spreading of the human osteoblast-like cells. The VnP-16-treated SLA implants showed no antigenic activities at the interfaces between the bones and the implants and indicated excellent bone-to-implant contact ratios, the means of which were significantly higher than those in the SP-treated implants. VnP-16 reinforces the osteogenic potential of the SLA titanium dental implant.

SELECTION OF CITATIONS
SEARCH DETAIL
...