Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Small ; : e2406018, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101351

ABSTRACT

Although various electrocatalysts have been developed to ameliorate the shuttle effect and sluggish Li-S conversion kinetics, their electrochemical inertness limits the sufficient performance improvement of lithium-sulfur batteries (LSBs). In this work, an electrochemically active MoO3/TiN-based heterostructure (MOTN) is designed as an efficient sulfur host that can improve the overall electrochemical properties of LSBs via prominent lithiation behaviors. By accommodating Li ions into MoO3 nanoplates, the MOTN host can contribute its own capacity. Furthermore, the Li intercalation process dynamically affects the electronic interaction between MoO3 and TiN and thus significantly reinforces the built-in electric field, which further improves the comprehensive electrocatalytic abilities of the MOTN host. Because of these merits, the MOTN host-based sulfur cathode delivers an exceptional specific capacity of 2520 mA h g-1 at 0.1 C. Furthermore, the cathode exhibits superior rate capability (564 mA h g-1 at 5 C), excellent cycling stability (capacity fade rate of 0.034% per cycle for 1200 cycles at 2 C), and satisfactory areal capacity (6.6 mA h cm-2) under a high sulfur loading of 8.3 mg cm-2. This study provides a novel strategy to develop electrochemically active heterostructured electrocatalysts and rationally manipulate the built-in electric field for achieving high-performance LSBs.

2.
Micromachines (Basel) ; 15(8)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39203708

ABSTRACT

Monitoring neural activity in the central nervous system often utilizes silicon-based microelectromechanical system (MEMS) probes. Despite their effectiveness in monitoring, these probes have a fragility issue, limiting their application across various fields. This study introduces flexible printed circuit board (FPCB) neural probes characterized by robust mechanical and electrical properties. The probes demonstrate low impedance after platinum coating, making them suitable for multiunit recordings in awake animals. This capability allows for the simultaneous monitoring of a large population of neurons in the brain, including cluster data. Additionally, these probes exhibit no fractures, mechanical failures, or electrical issues during repeated-bending tests, both during handling and monitoring. Despite the possibility of using this neural probe for signal measurement in awake animals, simply applying a platinum coating may encounter difficulties in chronic tests and other applications. Furthermore, this suggests that FPCB probes can be advanced by any method and serve as an appropriate type of tailorable neural probes for monitoring neural systems in awake animals.

3.
Sensors (Basel) ; 24(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38610511

ABSTRACT

Flexible neural probes are attractive emerging technologies for brain recording because they can effectively record signals with minimal risk of brain damage. Reducing the electrode impedance of the probe before recording is a common practice of many researchers. However, studies investigating the impact of low impedance levels on high-quality recordings using flexible neural probes are lacking. In this study, we electrodeposited Pt onto a commercial flexible polyimide neural probe and investigated the relationship between the impedance level and the recording quality. The probe was inserted into the brains of anesthetized mice. The electrical signals of neurons in the brain, specifically the ventral posteromedial nucleus of the thalamus, were recorded at impedance levels of 50, 250, 500 and 1000 kΩ at 1 kHz. The study results demonstrated that as the impedance decreased, the quality of the signal recordings did not consistently improve. This suggests that extreme lowering of the impedance may not always be advantageous in the context of flexible neural probes.


Subject(s)
Brain Injuries , Animals , Mice , Electric Impedance , Neurons , Brain , Electricity
4.
Biosens Bioelectron ; 247: 115932, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38113695

ABSTRACT

Early detection and effective blood glucose control are critical for preventing and managing diabetes-related complications. Conventional glucometers provide point-in-time measurements but are painful and cannot facilitate continuous monitoring. Continuous glucose monitoring systems are comfortable but face challenges in terms of accuracy, cost, and sensor lifespan. This study aimed to develop a microneedle-based sensor patch for minimally invasive, painless, and continuous glucose monitoring in the interstitial fluid to address these limitations. Experimental results confirm painless and minimally invasive penetration of the skin tissue with cylindrical microneedles (3 × 3 array) to a depth of approximately 520 µm with minimal loading. The microneedle sensors fabricated with precision using the complementary metal-oxide semiconductor process were immobilized with glucose oxidase, as confirmed through phase angle analysis. Long-term tests confirmed the effective operation of the sensor for up to seven days. Glucose concentrations determined from the fitted concentration-impedance curves correlated well with those measured using commercial glucometers, indicating the reliability and precision of the microneedle sensor. The flexible and minimally invasive sensor developed in this study facilitates painless and continuous glucose monitoring.


Subject(s)
Biosensing Techniques , Blood Glucose Self-Monitoring , Blood Glucose , Polymers , Extracellular Fluid/chemistry , Electric Impedance , Reproducibility of Results , Needles , Glucose/analysis
SELECTION OF CITATIONS
SEARCH DETAIL