Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 212(11): 1733-1743, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38656392

ABSTRACT

The thymus is the site of T lymphocyte development and T cell education to recognize foreign, but not self, Ags. B cells also reside and develop in the thymus, although their functions are less clear. During "thymic involution," a process of lymphoid atrophy and adipose replacement linked to sexual maturation, thymocytes decline. However, thymic B cells decrease far less than T cells, such that B cells comprise ∼1% of human neonatal thymocytes but up to ∼10% in adults. All jawed vertebrates possess a thymus, and we and others have shown zebrafish (Danio rerio) also have thymic B cells. In this article, we investigated the precise identities of zebrafish thymic T and B cells and how they change with involution. We assessed the timing and specific details of zebrafish thymic involution using multiple lymphocyte-specific, fluorophore-labeled transgenic lines, quantifying the changes in thymic T- and B-lymphocytes pre- versus postinvolution. Our results prove that, as in humans, zebrafish thymic B cells increase relative to T cells postinvolution. We also performed RNA sequencing on D. rerio thymic and marrow lymphocytes of four novel double-transgenic lines, identifying distinct populations of immature T and B cells. Collectively, this is, to our knowledge, the first comprehensive analysis of zebrafish thymic involution, demonstrating its similarity to human involution and establishing the highly genetically manipulatable zebrafish model as a template for involution studies.


Subject(s)
B-Lymphocytes , Thymus Gland , Zebrafish , Animals , Zebrafish/immunology , Thymus Gland/immunology , Thymus Gland/cytology , B-Lymphocytes/immunology , Animals, Genetically Modified , T-Lymphocytes/immunology , Humans , Cell Differentiation/immunology , Models, Animal
2.
bioRxiv ; 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37546788

ABSTRACT

The thymus is the site of T lymphocyte development and T cell education to recognize foreign, but not self, antigens. B cells also reside and develop in the thymus, although their functions are less clear. During 'thymic involution,' a process of lymphoid atrophy and adipose replacement linked to sexual maturation, thymocytes decline. However, thymic B cells decrease far less than T cells, such that B cells comprise ~1% of human neonatal thymocytes, but up to ~10% in adults. All jawed vertebrates possess a thymus, and we and others have shown zebrafish (Danio rerio) also have thymic B cells. Here, we investigated the precise identities of zebrafish thymic T and B cells and how they change with involution. We assessed the timing and specific details of zebrafish thymic involution using multiple lymphocyte-specific, fluorophore-labeled transgenic lines, quantifying the changes in thymic T- and B-lymphocytes pre- vs. post-involution. Our results prove that, as in humans, zebrafish thymic B cells increase relative to T cells post-involution. We also performed RNA sequencing (RNA-seq) on D. rerio thymic and marrow lymphocytes of four novel double-transgenic lines, identifying distinct populations of immature T and B cells. Collectively, this is the first comprehensive analysis of zebrafish thymic involution, demonstrating its similarity to human involution, and establishing the highly genetically-manipulatable zebrafish model as a template for involution studies.

3.
Oncotarget ; 11(15): 1292-1305, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32341750

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the most common pediatric, and ninth most common adult, cancer. ALL can develop in either B or T lymphocytes, but B-lineage ALL (B-ALL) exceeds T-ALL clinically. As for other cancers, animal models allow study of the molecular mechanisms driving ALL. Several zebrafish (Danio rerio) T-ALL models have been reported, but until recently, robust D. rerio B-ALL models were not described. Then, D. rerio B-ALL was discovered in two related zebrafish transgenic lines; both were already known to develop T-ALL. Here, we report new B-ALL findings in one of these models, fish expressing transgenic human MYC (hMYC). We describe B-ALL incidence in a large cohort of hMYC fish, and show B-ALL in two new lines where T-ALL does not interfere with B-ALL detection. We also demonstrate B-ALL responses to steroid and radiation treatments, which effect ALL remissions, but are usually followed by prompt relapses. Finally, we report gene expression in zebrafish B lymphocytes and B-ALL, in both bulk samples and single B- and T-ALL cells. Using these gene expression profiles, we compare differences between the two new D. rerio B-ALL models, which are both driven by transgenic mammalian MYC oncoproteins. Collectively, these new data expand the utility of this new vertebrate B-ALL model.

4.
Int J Mol Sci ; 20(21)2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31731471

ABSTRACT

Despite advancements in the diagnosis and treatment of acute lymphoblastic leukemia (ALL), a need for improved strategies to decrease morbidity and improve cure rates in relapsed/refractory ALL still exists. Such approaches include the identification and implementation of novel targeted combination regimens, and more precise upfront patient risk stratification to guide therapy. New curative strategies rely on an understanding of the pathobiology that derives from systematically dissecting each cancer's genetic and molecular landscape. Zebrafish models provide a powerful system to simulate human diseases, including leukemias and ALL specifically. They are also an invaluable tool for genetic manipulation, in vivo studies, and drug discovery. Here, we highlight and summarize contributions made by several zebrafish T-ALL models and newer zebrafish B-ALL models in translating the underlying genetic and molecular mechanisms operative in ALL, and also highlight their potential utility for drug discovery. These models have laid the groundwork for increasing our understanding of the molecular basis of ALL to further translational and clinical research endeavors that seek to improve outcomes in this important cancer.


Subject(s)
Neoplasms, Experimental , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Zebrafish , Animals , Humans , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Zebrafish/genetics , Zebrafish/metabolism
5.
J Vis Exp ; (144)2019 02 22.
Article in English | MEDLINE | ID: mdl-30855581

ABSTRACT

Zebrafish (Danio rerio) are a powerful model to study lymphocyte development. Like mammals, D. rerio possess an adaptive immune system that includes B and T lymphocytes. Studies of zebrafish lymphopoiesis are difficult because antibodies recognizing D. rerio cell surface markers are generally not available, complicating isolation and characterization of different lymphocyte populations, including B-lineage cells. Transgenic lines with lineage-specific fluorophore expression are often used to circumvent this challenge. The transgenic lck:eGFP line has been used to study D. rerio T cell development, and has also been utilized to model T cell development and acute lymphoblastic leukemia (T-ALL). Although lck:eGFP fish have been widely used to analyze the T-lineage, they have not been used to study B cells. Recently, we discovered that many zebrafish B cells also express lck, albeit at lower levels. Consequently, lck:eGFP B cells likewise express low levels of GFP. Based on this finding, we developed a protocol to purify B-lineage cells from lck:eGFP zebrafish, which we report here. Our method describes how to utilize a fluorescent-activated cell sorter (FACS) to purify B cells from lck:eGFP fish or related lines, such as double-transgenic rag2:hMYC; lck:eGFP fish. In these lines, B cells, particularly immature B cells, express GFP at low but detectable levels, allowing them to be distinguished from T cells, which express GFP highly. B cells can be isolated from marrow, thymus, spleen, blood, or other tissues. This protocol provides a new method to purify D. rerio B cells, enabling studies focused on topics like B cell development and B lymphocyte malignancies.


Subject(s)
B-Lymphocytes/cytology , B-Lymphocytes/pathology , Cell Separation/methods , Green Fluorescent Proteins/genetics , Zebrafish/immunology , Animals , Animals, Genetically Modified , Cell Differentiation , Cell Lineage , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , T-Lymphocytes/cytology , Zebrafish/genetics
6.
Leukemia ; 33(2): 333-347, 2019 02.
Article in English | MEDLINE | ID: mdl-30111845

ABSTRACT

Precursor-B cell acute lymphoblastic leukemia (pre-B ALL) is the most common pediatric cancer, but there are no useful zebrafish pre-B ALL models. We describe the first highly- penetrant zebrafish pre-B ALL, driven by human MYC. Leukemias express B lymphoblast-specific genes and are distinct from T cell ALL (T-ALL)-which these fish also develop. Zebrafish pre-B ALL shares in vivo features and expression profiles with human pre-B ALL, and these profiles differ from zebrafish T-ALL or normal B and T cells. These animals also exhibit aberrant lymphocyte development. As the only robust zebrafish pre-B ALL model and only example where T-ALL also develops, this model can reveal differences between MYC-driven pre-B vs. T-ALL and be exploited to discover novel pre-B ALL therapies.


Subject(s)
Cell Transformation, Neoplastic/pathology , Gene Expression Regulation, Neoplastic , Lymphopoiesis , Neoplasms, Multiple Primary/pathology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Proto-Oncogene Proteins c-myc/metabolism , Animals , Animals, Genetically Modified , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Gene Expression Profiling , Humans , Neoplasms, Multiple Primary/genetics , Neoplasms, Multiple Primary/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Proto-Oncogene Proteins c-myc/genetics , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...