Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 262
Filter
1.
Plant Cell Environ ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741272

ABSTRACT

Excess soil salinity significantly impairs plant growth and development. Our previous reports demonstrated that the core circadian clock oscillator GIGANTEA (GI) negatively regulates salt stress tolerance by sequestering the SALT OVERLY SENSITIVE (SOS) 2 kinase, an essential component of the SOS pathway. Salt stress induces calcium-dependent cytoplasmic GI degradation, resulting in activation of the SOS pathway; however, the precise molecular mechanism governing GI degradation during salt stress remains enigmatic. Here, we demonstrate that salt-induced calcium signals promote the cytoplasmic partitioning of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), leading to the 26S proteasome-dependent degradation of GI exclusively in the roots. Salt stress-induced calcium signals accelerate the cytoplasmic localization of COP1 in the root cells, which targets GI for 26S proteasomal degradation. Align with this, the interaction between COP1 and GI is only observed in the roots, not the shoots, under salt-stress conditions. Notably, the gi-201 cop1-4 double mutant shows an enhanced tolerance to salt stress similar to gi-201, indicating that GI is epistatic to COP1 under salt-stress conditions. Taken together, our study provides critical insights into the molecular mechanisms governing the COP1-mediated proteasomal degradation of GI for salt stress tolerance, raising new possibilities for developing salt-tolerant crops.

2.
Nanomaterials (Basel) ; 14(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38607156

ABSTRACT

Inverted organic light-emitting devices (OLEDs) have been aggressively developed because of their superiorities such as their high stability, low driving voltage, and low drop of brightness in display applications. The injection of electrons is a critical issue in inverted OLEDs because the ITO cathode has an overly high work function in injecting electrons into the emission layer from the cathode. We synthesized hexagonal wurtzite ZnO nanoparticles using different oxidizing agents for an efficient injection of electrons in the inverted OLEDs. Potassium hydroxide (KOH) and tetramethylammonium hydroxide pentahydrate (TMAH) were used as oxidizing agents for synthesizing ZnO nanoparticles. The band gap, surface defects, surface morphology, surface roughness, and electrical resistivity of the nanoparticles were investigated. The inverted devices with phosphorescent molecules were prepared using the synthesized nanoparticles. The inverted devices with ZnO nanoparticles using TMAH exhibited a lower driving voltage, lower leakage current, and higher maximum external quantum efficiency. The devices with TMAH-based ZnO nanoparticles exhibited the maximum external quantum efficiency of 19.1%.

3.
Artif Cells Nanomed Biotechnol ; 52(1): 250-260, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38687561

ABSTRACT

Despite many recent studies on non-alcoholic fatty liver disease (NAFLD) therapeutics, the optimal treatment has yet to be determined. In this unfinished project, we combined secondary metabolites (SMs) from the gut microbiota (GM) and Hordeum vulgare (HV) to investigate their combinatorial effects via network pharmacology (NP). Additionally, we analyzed GM or barley - signalling pathways - targets - metabolites (GBSTMs) in combinatorial perspectives (HV, and GM). A total of 31 key targets were analysed via a protein-protein interaction (PPI) network, and JUN was identified as the uppermost target in NAFLD. On a bubble plot, we revealed that apelin signalling pathway, which had the lowest enrichment factor antagonize NAFLD. Holistically, we scrutinized GBSTM to identify key components (GM, signalling pathways, targets, and metabolites) associated with the Apelin signalling pathway. Consequently, we found that the primary GMs (Eubacterium limosum, Eggerthella sp. SDG-2, Alistipes indistinctus YIT 12060, Odoribacter laneus YIT 12061, Paraprevotella clara YIT 11840, Paraprevotella xylaniphila YIT 11841) to ameliorate NAFLD. The molecular docking test (MDT) suggested that tryptanthrin-JUN is an agonist, conversely, dihydroglycitein-HDAC5, 1,3-diphenylpropan-2-ol-NOS1, and (10[(Acetyloxy)methyl]-9-anthryl)methyl acetate-NOS2, which are antagonistic conformers in the apelin signalling pathway. Overall, these results suggest that combination therapy could be an effective strategy for treating NAFLD.


Subject(s)
Gastrointestinal Microbiome , Hordeum , Non-alcoholic Fatty Liver Disease , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/metabolism , Hordeum/microbiology , Hordeum/metabolism , Gastrointestinal Microbiome/drug effects , Animals , Signal Transduction/drug effects , Mice , Protein Interaction Maps , Humans
4.
Article in English | MEDLINE | ID: mdl-38467925

ABSTRACT

Diarrhea, a common gastrointestinal symptom in health problems, is highly associated with gut dysbiosis. The purpose of this study is to demonstrate the effect of multistrain probiotics (Sensi-Biome) on diarrhea from the perspective of the microbiome-neuron axis. Sensi-Biome (Lactiplantibacillus plantarum, Bifidobacterium animalis subsp. lactis, Lactobacillus acidophilus, Streptococcus thermophilus, Bifidobacterium bifidum, and Lactococcus lactis) was administered in a 4% acetic acid-induced diarrhea rat model at concentrations of 1 × 108 (G1), 1 × 109 (G2), and 1 × 1010 CFU/0.5 mL (G3). Diarrhea-related parameters, inflammation-related cytokines, and stool microbiota analysis by 16S rRNA were evaluated. A targeted and untargeted metabolomics approach was used to analyze the cecum samples using liquid chromatography and orbitrap mass spectrometry. The stool moisture content (p < 0.001), intestinal movement rate (p < 0.05), and pH (p < 0.05) were significantly recovered in G3. Serotonin levels were decreased in the multistrain probiotics groups. The inflammatory cytokines, serotonin, and tryptophan hydroxylase expression were improved in the Sensi-Biome groups. At the phylum level, Sensi-Biome showed the highest relative abundance of Firmicutes. Short-chain fatty acids including butyrate, iso-butyrate, propionate, and iso-valeric acid were significantly modified in the Sensi-Biome groups. Equol and oleamide were significantly improved in the multistrain probiotics groups. In conclusion, Sensi-Biome effectively controls diarrhea by modulating metabolites and the serotonin pathway.

5.
Proc Natl Acad Sci U S A ; 121(9): e2320657121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38386704

ABSTRACT

To control net sodium (Na+) uptake, Arabidopsis plants utilize the plasma membrane (PM) Na+/H+ antiporter SOS1 to achieve Na+ efflux at the root and Na+ loading into the xylem, and the channel-like HKT1;1 protein that mediates the reverse flux of Na+ unloading off the xylem. Together, these opposing transport systems govern the partition of Na+ within the plant yet they must be finely co-regulated to prevent a futile cycle of xylem loading and unloading. Here, we show that the Arabidopsis SOS3 protein acts as the molecular switch governing these Na+ fluxes by favoring the recruitment of SOS1 to the PM and its subsequent activation by the SOS2/SOS3 kinase complex under salt stress, while commanding HKT1;1 protein degradation upon acute sodic stress. SOS3 achieves this role by direct and SOS2-independent binding to previously unrecognized functional domains of SOS1 and HKT1;1. These results indicate that roots first retain moderate amounts of salts to facilitate osmoregulation, yet when sodicity exceeds a set point, SOS3-dependent HKT1;1 degradation switches the balance toward Na+ export out of the root. Thus, SOS3 functionally links and co-regulates the two major Na+ transport systems operating in vascular plants controlling plant tolerance to salinity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Protein Transport , Biological Transport , Proteolysis , Osmoregulation , Sodium-Hydrogen Exchangers/genetics , Arabidopsis Proteins/genetics
6.
Gut Microbes ; 16(1): 2307568, 2024.
Article in English | MEDLINE | ID: mdl-38299316

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease, and its prevalence has increased worldwide in recent years. Additionally, there is a close relationship between MASLD and gut microbiota-derived metabolites. However, the mechanisms of MASLD and its metabolites are still unclear. We demonstrated decreased indole-3-propionic acid (IPA) and indole-3-acetic acid (IAA) in the feces of patients with hepatic steatosis compared to healthy controls. Here, IPA and IAA administration ameliorated hepatic steatosis and inflammation in an animal model of WD-induced MASLD by suppressing the NF-κB signaling pathway through a reduction in endotoxin levels and inactivation of macrophages. Bifidobacterium bifidum metabolizes tryptophan to produce IAA, and B. bifidum effectively prevents hepatic steatosis and inflammation through the production of IAA. Our study demonstrates that IPA and IAA derived from the gut microbiota have novel preventive or therapeutic potential for MASLD treatment.


Subject(s)
Bifidobacterium bifidum , Fatty Liver , Gastrointestinal Microbiome , Metabolic Diseases , Animals , Humans , Lipid Metabolism , Indoles/pharmacology , Fatty Liver/drug therapy , Inflammation/drug therapy
7.
J Korean Med Sci ; 39(3): e31, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38258363

ABSTRACT

BACKGROUND: Postpartum depression (PPD) can negatively affect infant well-being and child development. Although the frequency and risk factors of PPD symptoms might vary depending on the country and culture, there is limited research on these risk factors among Korean women. This study aimed to elucidate the potential risk factors of PPD throughout pregnancy to help improve PPD screening and prevention in Korean women. METHODS: The pregnant women at 12 gestational weeks (GW) were enrolled from two obstetric specialized hospitals from March 2013 to November 2017. A questionnaire survey was administered at 12 GW, 24 GW, 36 GW, and 4 weeks postpartum. Depressive symptoms were assessed using the Edinburgh Postnatal Depression Scale, and PPD was defined as a score of ≥ 10. RESULTS: PPD was prevalent in 16.3% (410/2,512) of the participants. Depressive feeling at 12 GW and postpartum factors of stress, relationship with children, depressive feeling, fear, sadness, and neonatal intensive care unit admission of baby were significantly associated with a higher risk of PPD. Meanwhile, high postpartum quality of life and marital satisfaction at postpartum period were significantly associated with a lower risk of PPD. We developed a model for predicting PPD using factors as mentioned above and it had an area under the curve of 0.871. CONCLUSION: Depressive feeling at 12 GW and postpartum stress, fear, sadness, relationship with children, low quality of life, and low marital satisfaction increased the risk of PPD. A risk model that comprises significant factors can effectively predict PPD and can be helpful for its prevention and appropriate treatment.


Subject(s)
Depression, Postpartum , Pregnancy Outcome , Infant , Child , Infant, Newborn , Pregnancy , Female , Humans , Depression, Postpartum/diagnosis , Depression, Postpartum/epidemiology , Quality of Life , Risk Factors , Republic of Korea/epidemiology
8.
J Hazard Mater ; 465: 133525, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38237436

ABSTRACT

Copper (Cu) is an effective antimicrobial material; however, its activity is inhibited by oxidation. Titanium dioxide (TiO2) photocatalysis prevents Cu oxidation and improves its antimicrobial activity and stability. In this study, the virucidal efficacy of Cu-doped TiO2 nanoparticles (Cu-TiO2) with three different oxidation states of the Cu dopant (i.e., zero-valent Cu (Cu0), cuprous (CuI), and cupric (CuII) oxides) was evaluated for the phiX174 bacteriophage under visible light illumination (Vis/Cu-TiO2). CuI-TiO2 exhibited superior virucidal activity (5 log inactivation in 30 min) and reusability (only 11 % loss of activity in the fifth cycle) compared to Cu0-TiO2 and CuII-TiO2. Photoluminescence spectroscopy and photocurrent measurements showed that CuI-TiO2 exhibited the highest charge separation efficiency and photocurrent density (approximately 0.24 µA/cm2) among the three materials, resulting in the most active redox reactions of Cu. Viral inactivation tests under different additives and viral particle integrity analyses (i.e., protein oxidation and DNA damage analyses) revealed that different virucidal species played key roles in the three Vis/Cu-TiO2 systems; Cu(III) was responsible for the viral inactivation by Vis/CuI-TiO2. The Vis/CuI-TiO2 system exhibited substantial virucidal performance for different viral species and in different water matrices, demonstrating its potential practical applications. The findings of this study offer valuable insights into the design of effective and sustainable antiviral photocatalysts for disinfection.


Subject(s)
Anti-Infective Agents , Nanoparticles , Lighting , Light , Nanoparticles/chemistry , Oxidation-Reduction , Titanium/chemistry , Catalysis
9.
Chemosphere ; 349: 140897, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38070613

ABSTRACT

Biodegradable cellulose acetate (CA) nanofibers containing Rose Bengal (RB) dye were fabricated by electrospinning technique. RB dye, an anionic photosensitizer, has been used in photodynamic therapy due to its excellent biocompatibility and ability to absorb light to generate reactive oxygen species (ROS), but has a decisive disadvantage of water solubility on infection prevention. Firstly, water-insoluble RB dye was synthesized through complexation with cationic ionic liquid (IL) for antiviral agents. The synthesized water-insoluble RB dyes were embedded into biodegradable CA nanofibers by electrospinning. The electrospun nanofibers passed both antiviral test for φx174 virus under visible light irradiation and biodegradability-test using enzymes. The fabricated RB nanofibers absorbed light and generated ROS to inactivate the virus. As a result, the log reduction (-Log10(N/N0)) of φx174 titer under visible light reached a detection limit of 5.00 within 30 min. Also, the fabricated nanofibers were degraded up to 34 wt % in 9 weeks by lipase and cellulase enzymes compared with non-biodegradable nanofibers.


Subject(s)
Nanofibers , Rose Bengal , Rose Bengal/pharmacology , Coloring Agents , Reactive Oxygen Species , Light , Water , Antiviral Agents
10.
Plants (Basel) ; 12(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37960036

ABSTRACT

The timing of floral transition is determined by both endogenous molecular pathways and external environmental conditions. Among these environmental conditions, photoperiod acts as a cue to regulate the timing of flowering in response to seasonal changes. Additionally, it has become clear that various environmental factors also control the timing of floral transition. Environmental factor acts as either a positive or negative signal to modulate the timing of flowering, thereby establishing the optimal flowering time to maximize the reproductive success of plants. This review aims to summarize the effects of environmental factors such as photoperiod, light intensity, temperature changes, vernalization, drought, and salinity on the regulation of flowering time in plants, as well as to further explain the molecular mechanisms that link environmental factors to the internal flowering time regulation pathway.

11.
Plants (Basel) ; 12(18)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37765463

ABSTRACT

Flowering time in plants is a complex process regulated by environmental conditions such as photoperiod and temperature, as well as nutrient conditions. While the impact of major nutrients like nitrogen, phosphorus, and potassium on flowering time has been well recognized, the significance of micronutrient imbalances and their deficiencies should not be neglected because they affect the floral transition from the vegetative stage to the reproductive stage. The secondary major nutrients such as calcium, magnesium, and sulfur participate in various aspects of flowering. Micronutrients such as boron, zinc, iron, and copper play crucial roles in enzymatic reactions and hormone biosynthesis, affecting flower development and reproduction as well. The current review comprehensively explores the interplay between microelements and flowering time, and summarizes the underlying mechanism in plants. Consequently, a better understanding of the interplay between microelements and flowering time will provide clues to reveal the roles of microelements in regulating flowering time and to improve crop reproduction in plant industries.

12.
Toxicology ; 496: 153618, 2023 09.
Article in English | MEDLINE | ID: mdl-37611816

ABSTRACT

With its increasing value as a means of public transportation, the health effects of the air in subway stations have attracted public concern. In the current study, we investigated the pulmonary toxicity of dust collected from an air purifier installed on the platform of the busiest subway station in Seoul. We found that the dust contained various elements which are attributable to the facilities and equipment used to operate the subway system. Particularly, iron (Fe), chromium (Cr), zirconium (Zr), barium (Ba), and molybdenum (Mo) levels were more notable in comparison with those in dust collected from the ventilation chamber of a subway station. To explore the health effects of inhaled dust, we first instilled via the trachea in ICR mice for 13 weeks. The total number of pulmonary macrophages increased significantly with the dose, accompanying hematological changes. Dust-laden alveolar macrophages and inflammatory cells accumulated in the perivascular regions in the lungs of the treated mice, and pulmonary levels of CXCL-1, TNF-α, and TGF-ß increased clearly compared with the control. The CCR5 and CD54 level expressed on BAL cell membranes was also enhanced following exposure to dust, whereas the CXCR2 level tended to decrease in the same samples. In addition, we treated the dust to alveolar macrophages (known as dust cells), lysosomal and mitochondrial function decreased, accompanied by cell death, and NO production was rapidly elevated with concentration. Moreover, the expression of autophagy- (p62) and anti-oxidant (SOD-2)-related proteins increased, and the expression of inflammation-related genes was dramatically up-regulated in the dust-treated cells. Therefore, we suggest that dysfunction of alveolar macrophages may importantly contribute to dust-induced inflammatory responses and that the exposure concentrations of Cr, Fe, Mo, Zr, and Ba should be considered carefully when assessing the health risks associated with subway dust. We also hypothesize that the bound elements may contribute to dust-induced macrophage dysfunction by inhibiting viability.


Subject(s)
Pneumonia , Railroads , Animals , Mice , Mice, Inbred ICR , Macrophages, Alveolar , Pneumonia/chemically induced , Dust
13.
Eur J Radiol ; 167: 111028, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37595398

ABSTRACT

PURPOSE: The aim of this study was to evaluate the relationship between the grade of signal change of the pericruciate fat pad (PCFP) and the location and severity of cartilage alterations in the knee on magnetic resonance imaging (MRI). MATERIALS AND METHODS: This retrospective study included 234 patients (M:F = 96:138, mean: 51 years) who underwent knee MRI. Two experienced musculoskeletal radiologists assessed any PCFP alterations (as grades 0-3) and chondral lesions using the modified Outerbridge grade (as grades 0-4). Bone marrow lesions (BMLs), meniscal status, anterior cruciate ligament alterations, and effusion-synovitis were also evaluated on the MRI. The relationships between PCFP alteration and MR findings (including the grade of chondral lesion) were evaluated. RESULTS: Signal changes in the PCFP were detected in 150 cases by Reader 1 (grade 0, 67 cases; grade 1, 53 cases; grade 2, 21 cases; grade 3, 9 cases) and in 154 cases by Reader 2 (grade 0, 59 cases; grade 1, 61 cases; grade 2, 24 cases; grade 3, 10 cases). The grade of PCFP signal change was statistically significantly correlated with the grade of the chondral lesion of the medial femoral condyle (MFC) (p = 0.029 and p = 0.003, respectively) and the medial tibial plateau (MTP) (p = 0.045, p = 0.002, Readers 1 and 2, respectively). The grade of PCFP signal change was significantly correlated with the grade of the BMLs of the MFC, MTP, and lateral femoral condyle (p < 0.05) for both readers. PCFP alteration was related to effusion-synovitis and tears of the medial meniscus. CONCLUSIONS: The grade of PCFP signal change was correlated with the severity of the cartilage alteration in the medial compartment of the knee joint and was also correlated with BMLs in the medial compartment, medial meniscal tears, and synovitis. Therefore, signal change in the PFCP seen on MRI can be an additional clue of the presence of osteoarthritis in the knee, particularly in the medial compartment.


Subject(s)
Anterior Cruciate Ligament Injuries , Bone Diseases , Cartilage Diseases , Cartilage, Articular , Synovitis , Humans , Retrospective Studies , Knee Joint/diagnostic imaging , Knee Joint/pathology , Menisci, Tibial/pathology , Anterior Cruciate Ligament , Magnetic Resonance Imaging , Cartilage Diseases/diagnostic imaging , Cartilage Diseases/pathology , Bone Diseases/pathology , Synovitis/pathology , Anterior Cruciate Ligament Injuries/pathology , Cartilage, Articular/diagnostic imaging
14.
Diagnostics (Basel) ; 13(15)2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37568895

ABSTRACT

As the prevalence of pregnancies with advanced maternal age increases, the risk of fetal chromosomal abnormalities is on the rise. Therefore, prenatal genetic screening and diagnosis have become essential elements in contemporary obstetrical care. Trophoblast retrieval and isolation from the cervix (TRIC) is a non-invasive procedure that can be utilized for prenatal genetic diagnosis. The method involves the isolation of fetal cells (extravillous trophoblasts) by transcervical sampling; along with its non-invasiveness, TRIC exhibits many other advantages such as its usefulness in early pregnancy at 5 weeks of gestation, and no interference by various fetal and maternal factors. Moreover, the trophoblast yields from TRIC can provide valuable information about obstetrical complications related to abnormal placentation even before clinical symptoms arise. The standardization of this clinical tool is still under investigation, and the upcoming advancements in TRIC are expected to meet the increasing need for a safe and accurate option for prenatal diagnosis.

15.
Front Microbiol ; 14: 1174968, 2023.
Article in English | MEDLINE | ID: mdl-37333632

ABSTRACT

Constipation is one of the most common gastrointestinal (GI) disorders worldwide. The use of probiotics to improve constipation is well known. In this study, the effect on loperamide-induced constipation by intragastric administration of probiotics Consti-Biome mixed with SynBalance® SmilinGut (Lactobacillus plantarum PBS067, Lactobacillus rhamnosus LRH020, Bifidobacterium animalis subsp. lactis BL050; Roelmi HPC), L. plantarum UALp-05 (Chr. Hansen), Lactobacillus acidophilus DDS-1 (Chr. Hansen), and Streptococcus thermophilus CKDB027 (Chong Kun Dang Bio) to rats was evaluated. To induce constipation, 5 mg/kg loperamide was intraperitoneally administered twice a day for 7 days to all groups except the normal control group. After inducing constipation, Dulcolax-S tablets and multi-strain probiotics Consti-Biome were orally administered once a day for 14 days. The probiotics were administered 0.5 mL at concentrations of 2 × 108 CFU/mL (G1), 2 × 109 CFU/mL (G2), and 2 × 1010 CFU/mL (G3). Compared to the loperamide administration group (LOP), the multi-strain probiotics not only significantly increased the number of fecal pellets but also improved the GI transit rate. The mRNA expression levels of serotonin- and mucin-related genes in the colons that were treated with the probiotics were also significantly increased compared to levels in the LOP group. In addition, an increase in serotonin was observed in the colon. The cecum metabolites showed a different pattern between the probiotics-treated groups and the LOP group, and an increase in short-chain fatty acids was observed in the probiotic-treated groups. The abundances of the phylum Verrucomicrobia, the family Erysipelotrichaceae and the genus Akkermansia were increased in fecal samples of the probiotic-treated groups. Therefore, the multi-strain probiotics used in this experiment were thought to help alleviate LOP-induced constipation by altering the levels of short-chain fatty acids, serotonin, and mucin through improvement in the intestinal microflora.

16.
Artif Cells Nanomed Biotechnol ; 51(1): 217-232, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37129458

ABSTRACT

We comprised metabolites of gut microbiota (GM; endogenous species) and dietary plant-derived natural flavonoids (DPDNFs; exogenous species) were known as potent effectors against non-alcoholic fatty liver disease (NAFLD) via network pharmacology (NP). The crucial targets against NAFLD were identified via GM and DPDNFs. The protein interaction (PPI), bubble chart and networks of GM or natural products- metabolites-targets-key signalling (GNMTK) pathway were described via R Package. Furthermore, the molecular docking test (MDT) to verify the affinity was performed between metabolite(s) and target(s) on a key signalling pathway. On the networks of GNMTK, Enterococcus sp. 45, Escherichia sp.12, Escherichia sp.33 and Bacterium MRG-PMF-1 as key microbiota; flavonoid-rich products as key natural resources; luteolin and myricetin as key metabolites (or dietary flavonoids); AKT Serine/Threonine Kinase 1 (AKT1), CF Transmembrane conductance Regulator (CFTR) and PhosphoInositide-3-Kinase, Regulatory subunit 1 (PIK3R1) as key targets are promising components to treat NAFLD, by suppressing cyclic Adenosine MonoPhosphate (cAMP) signalling pathway. This study shows that components (microbiota, metabolites, targets and a key signalling pathway) and DPDNFs can exert combinatorial pharmacological effects against NAFLD. Overall, the integrated pharmacological approach sheds light on the relationships between GM and DPDNFs.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Molecular Docking Simulation , Network Pharmacology , Flavonoids/pharmacology
18.
Plant Commun ; 4(4): 100570, 2023 07 10.
Article in English | MEDLINE | ID: mdl-36864727

ABSTRACT

Flowering is the primary stage of the plant developmental transition and is tightly regulated by environmental factors such as light and temperature. However, the mechanisms by which temperature signals are integrated into the photoperiodic flowering pathway are still poorly understood. Here, we demonstrate that HOS15, which is known as a GI transcriptional repressor in the photoperiodic flowering pathway, controls flowering time in response to low ambient temperature. At 16°C, the hos15 mutant exhibits an early flowering phenotype, and HOS15 acts upstream of photoperiodic flowering genes (GI, CO, and FT). GI protein abundance is increased in the hos15 mutant and is insensitive to the proteasome inhibitor MG132. Furthermore, the hos15 mutant has a defect in low ambient temperature-mediated GI degradation, and HOS15 interacts with COP1, an E3 ubiquitin ligase for GI degradation. Phenotypic analyses of the hos15 cop1 double mutant revealed that repression of flowering by HOS15 is dependent on COP1 at 16°C. However, the HOS15-COP1 interaction was attenuated at 16°C, and GI protein abundance was additively increased in the hos15 cop1 double mutant, indicating that HOS15 acts independently of COP1 in GI turnover at low ambient temperature. This study proposes that HOS15 controls GI abundance through multiple modes as an E3 ubiquitin ligase and transcriptional repressor to coordinate appropriate flowering time in response to ambient environmental conditions such as temperature and day length.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , DNA-Binding Proteins/genetics , Flowers/genetics , Temperature , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
19.
Front Microbiol ; 14: 1129904, 2023.
Article in English | MEDLINE | ID: mdl-36937300

ABSTRACT

Emerging evidences about gut-microbial modulation have been accumulated in the treatment of nonalcoholic fatty liver disease (NAFLD). We evaluated the effect of Bifidobacterium breve and Bifidobacterium longum on the NAFLD pathology and explore the molecular mechanisms based on multi-omics approaches. Human stool analysis [healthy subjects (n = 25) and NAFLD patients (n = 32)] was performed to select NAFLD-associated microbiota. Six-week-old male C57BL/6 J mice were fed a normal chow diet (NC), Western diet (WD), and WD with B. breve (BB) or B. longum (BL; 109 CFU/g) for 8 weeks. Liver/body weight ratio, histopathology, serum/tool analysis, 16S rRNA-sequencing, and metabolites were examined and compared. The BB and BL groups showed improved liver histology and function based on liver/body ratios (WD 7.07 ± 0.75, BB 5.27 ± 0.47, and BL 4.86 ± 0.57) and NAFLD activity scores (WD 5.00 ± 0.10, BB 1.89 ± 1.45, and BL 1.90 ± 0.99; p < 0.05). Strain treatment showed ameliorative effects on gut barrier function. Metagenomic analysis showed treatment-specific changes in taxonomic composition. The community was mainly characterized by the significantly higher composition of the Bacteroidetes phylum among the NC and probiotic-feeding groups. Similarly, the gut metabolome was modulated by probiotics treatment. In particular, short-chain fatty acids and tryptophan metabolites were reverted to normal levels by probiotics, whereas bile acids were partially normalized to those of the NC group. The analysis of gene expression related to lipid and glucose metabolism as well as the immune response indicated the coordinative regulation of ß-oxidation, lipogenesis, and systemic inflammation by probiotic treatment. BB and BL attenuate NAFLD by improving microbiome-associated factors of the gut-liver axis.

20.
Health Informatics J ; 29(1): 14604582231169297, 2023.
Article in English | MEDLINE | ID: mdl-36995242

ABSTRACT

Objectives: This study aimed to evaluate the quality and readability of web pages providing information about hand osteoarthritis using several authorized methods.Methods: A web page exploration was performed using the Google internet search engine. The three search terms, "hand osteoarthritis," "finger osteoarthritis," and "hand OA," were used and the top 100 ranked websites were selected and divided into six categories. The Health on the Net Foundation (HON) grade scale, an instrument for judging the quality of written consumer health information on treatment choice (DISCERN instrument), and the Ensuring Quality Information for Patients (EQIP) score were used to evaluate the quality of each website. The Flesch-Kincaid reading ease (FRE) score, Flesch-Kincaid grade (FKG) level, Gunning-Fog index, and Simple Measure of Gobbledygook grade level were used to evaluate website readability.Results: Among 300 websites, 57 websites were selected following exclusion criteria. News portal websites, including the online version of newspapers and periodicals, showed the highest score in all three quality evaluation tools. Only four websites were regarded as high-quality websites based on the HON grade scale (n = 3) and the EQIP score (n = 1). Each type of website showed an average FKG level higher than 7th grade and obtained an average FRE score of less than 80 points, indicating an inappropriate level for a layperson to read.Conclusions: The online information about hand osteoarthritis is low quality and difficult to read for the general public. There is a need to enhance the quality and readability of web-based information related to hand osteoarthritis for patients to obtain credible information and receive proper treatment for the disease.


Subject(s)
Comprehension , Consumer Health Information , Humans , Reading , Search Engine , Internet
SELECTION OF CITATIONS
SEARCH DETAIL
...