Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters










Publication year range
1.
Fungal Genet Biol ; 171: 103877, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38447800

ABSTRACT

Airborne fungal spores are a major cause of fungal diseases in humans, animals, and plants as well as contamination of foods. Previous studies found a variety of regulators including VosA, VelB, WetA, and SscA for sporogenesis and the long-term viability in Aspergillus nidulans. To gain a mechanistic understanding of the complex regulatory mechanisms in asexual spores, here, we focused on the relationship between VosA and SscA using comparative transcriptomic analysis and phenotypic studies. The ΔsscA ΔvosA double-mutant conidia have lower spore viability and stress tolerance compared to the ΔsscA or ΔvosA single mutant conidia. Deletion of sscA or vosA affects chitin levels and mRNA levels of chitin biosynthetic genes in conidia. In addition, SscA and VosA are required for the dormant state of conidia and conidial germination by modulating the mRNA levels of the cytoskeleton and development-associated genes. Overall, these results suggest that SscA and VosA play interdependent roles in governing spore maturation, dormancy, and germination in A. nidulans.


Subject(s)
Aspergillus nidulans , Animals , Humans , Spores, Fungal/genetics , Spores, Fungal/metabolism , Aspergillus nidulans/genetics , Aspergillus nidulans/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , RNA, Messenger , Chitin/genetics
2.
Int J Food Microbiol ; 413: 110607, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38308877

ABSTRACT

Fungal spores are specialized dormant cells that act as primary reproductive biological particles and exhibit strong viability under extremely harsh conditions. They contaminate a variety of crops and foods, causing severe health hazards to humans and animals. Previous studies demonstrated that a spore-specific transcription factor SscA plays pivotal roles in the conidiogenesis of the model organism Aspergillus nidulans. In this study, we investigated the biological and genetic functions of SscA in the aflatoxin-producing fungus A. flavus. Deletion of sscA showed reduced conidia formation, lost long-term viability, and exhibited more sensitivity to thermal, oxidative, and radiative stresses. The sscA-deficient strain showed increased aflatoxin B1 production in conidia as well as mycelia. Importantly, the absence of sscA affected fungal pathogenicity on crops. Further transcriptomic and phenotypic studies suggested that SscA coordinates conidial wall structures. Overall, SscA is important for conidial formation, maturation and dormancy, mycotoxin production, and pathogenicity in A. flavus.


Subject(s)
Aflatoxins , Animals , Humans , Aspergillus flavus , Virulence/genetics , Fungal Proteins/genetics , Aflatoxin B1 , Spores, Fungal
3.
Microbiol Spectr ; 12(2): e0371723, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38179919

ABSTRACT

All life forms have evolved to respond appropriately to various environmental and internal cues. In the animal kingdom, the prototypical regulator class of such cellular responses is the Rel homology domain proteins including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Fungi, the close relatives of animals, have also evolved with their own NF-κB-like regulators called velvet family proteins to govern cellular and chemical development. Here, we conducted a detailed investigation of the taxonomic broad presence of velvet proteins. We observed that velvet proteins are widely distributed in the fungal kingdom. Moreover, we have identified and characterized 21 major velvet clades in fungi. We have further revealed that the highly conserved velvet domain is composed of three distinct motifs and acts as an evolutionarily independent domain, which can be shuffled with various functional domains. Such rearrangements of the velvet domain have resulted in the functional and type diversity of the present velvet regulators. Importantly, our in-deep analyses of the primary and 3D structures of the various velvet domains showed that the fungal velvet domains can be divided into two major clans: the VelB and the VosA clans. The 3D structure comparisons revealed a close similarity of the velvet domain with many other eukaryotic DNA-binding proteins, including those of the Rel, Runt, and signal transducer and activator of transcription families, sharing a common ß-sandwich fold. Altogether, this study improves our understanding of velvet regulators in the fungal kingdom.IMPORTANCEFungi are the relatives of animals in Opisthokonta and closely associated with human life by interactive ways such as pathogenicity, food, and secondary metabolites including beneficial ones like penicillin and harmful ones like the carcinogenic aflatoxins. Similar to animals, fungi have also evolved with NF-κB-like velvet family regulators. The velvet proteins constitute a large protein family of fungal transcription factors sharing a common velvet domain and play a key role in coordinating fungal secondary metabolism, developmental and differentiation processes. Our current understanding on velvet regulators is mostly from Ascomycota fungi; however, they remain largely unknown outside Ascomycota. Therefore, this study performed a taxonomic broad investigation of velvet proteins across the fungal kingdom and conducted a detailed analysis on velvet distribution, structure, diversity, and evolution. The results provide a holistic view of velvet regulatory system in the fungal kingdom.


Subject(s)
Fungal Proteins , NF-kappa B , Humans , NF-kappa B/metabolism , Fungal Proteins/genetics , Phylogeny , Transcription Factors/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Fungal , Spores, Fungal/metabolism
4.
mBio ; 14(5): e0184023, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37707170

ABSTRACT

IMPORTANCE: Filamentous fungi produce myriads of asexual spores, which are the main reproductive particles that act as infectious or allergenic agents. Although the serial of asexual sporogenesis is coordinated by various genetic regulators, there remain uncharacterized transcription factors in Aspergillus. To understand the underlying mechanism of spore formation, integrity, and viability, we have performed comparative transcriptomic analyses on three Aspergillus species and found a spore-specific transcription factor, SscA. SscA has a major role in conidial formation, maturation and dormancy, and germination in Aspergillus nidulans. Functional studies indicate that SscA coordinates conidial wall integrity, amino acid production, and secondary metabolism in A. nidulans conidia. Furthermore, the roles of SscA are conserved in other Aspergillus species. Our findings that the SscA has broad functions in Aspergillus conidia will help to understand the conidiogenesis of Aspergillus species.


Subject(s)
Aspergillus nidulans , Fungal Proteins , Fungal Proteins/metabolism , Aspergillus nidulans/genetics , Aspergillus nidulans/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Spores, Fungal/genetics , Spores, Fungal/metabolism , Gene Expression Profiling , Gene Expression Regulation, Fungal
6.
J Microbiol Biotechnol ; 33(11): 1420-1427, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37528554

ABSTRACT

The forkhead domain genes are important for development and morphogenesis in fungi. Six forkhead genes fkhA-fkhF have been found in the genome of the model filamentous Ascomycete Aspergillus nidulans. To identify the fkh gene(s) associated with fungal development, we examined mRNA levels of these six genes and found that the level of fkhB and fkhD mRNA was significantly elevated during asexual development and in conidia. To investigate the roles of FkhB and FkhD, we generated fkhB and fkhD deletion mutants and complemented strains and investigated their phenotypes. The deletion of fkhB, but not fkhD, affected fungal growth and both sexual and asexual development. The fkhB deletion mutant exhibited decreased colony size with distinctly pigmented (reddish) asexual spores and a significantly lower number of conidia compared with these features in the wild type (WT), although the level of sterigmatocystin was unaffected by the absence of fkhB. Furthermore, the fkhB deletion mutant produced sexual fruiting bodies (cleistothecia) smaller than those of WT, implying that the fkhB gene is involved in both asexual and sexual development. In addition, fkhB deletion reduced fungal tolerance to heat stress and decreased trehalose accumulation in conidia. Overall, these results suggest that fkhB plays a key role in proper fungal growth, development, and conidial stress tolerance in A. nidulans.


Subject(s)
Aspergillus nidulans , Fungal Proteins , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Phenotype , Spores, Fungal/genetics , RNA, Messenger
7.
Cells ; 12(11)2023 06 04.
Article in English | MEDLINE | ID: mdl-37296664

ABSTRACT

The genus Aspergillus, one of the most abundant airborne fungi, is classified into hundreds of species that affect humans, animals, and plants. Among these, Aspergillus nidulans, as a key model organism, has been extensively studied to understand the mechanisms governing growth and development, physiology, and gene regulation in fungi. A. nidulans primarily reproduces by forming millions of asexual spores known as conidia. The asexual life cycle of A. nidulans can be simply divided into growth and asexual development (conidiation). After a certain period of vegetative growth, some vegetative cells (hyphae) develop into specialized asexual structures called conidiophores. Each A. nidulans conidiophore is composed of a foot cell, stalk, vesicle, metulae, phialides, and 12,000 conidia. This vegetative-to-developmental transition requires the activity of various regulators including FLB proteins, BrlA, and AbaA. Asymmetric repetitive mitotic cell division of phialides results in the formation of immature conidia. Subsequent conidial maturation requires multiple regulators such as WetA, VosA, and VelB. Matured conidia maintain cellular integrity and long-term viability against various stresses and desiccation. Under appropriate conditions, the resting conidia germinate and form new colonies, and this process is governed by a myriad of regulators, such as CreA and SocA. To date, a plethora of regulators for each asexual developmental stage have been identified and investigated. This review summarizes our current understanding of the regulators of conidial formation, maturation, dormancy, and germination in A. nidulans.


Subject(s)
Aspergillus nidulans , Humans , Animals , Fungal Proteins/metabolism , Life Cycle Stages , Spores, Fungal/genetics
8.
Cells ; 11(24)2022 12 10.
Article in English | MEDLINE | ID: mdl-36552763

ABSTRACT

The VosA-VelB hetero-dimeric complex plays a pivotal role in regulating development and secondary metabolism in Aspergillus nidulans. In this work, we characterize a new VosA/VelB-activated gene called vadH, which is predicted to encode a 457-amino acid length protein containing four adjacent C2H2 zinc-finger domains. Mutational inactivation of vosA or velB led to reduced mRNA levels of vadH throughout the lifecycle, suggesting that VosA and VelB have a positive regulatory effect on the expression of vadH. The deletion of vadH resulted in decreased asexual development (conidiation) but elevated production of sexual fruiting bodies (cleistothecia), indicating that VadH balances asexual and sexual development in A. nidulans. Moreover, the vadH deletion mutant exhibited elevated susceptibility to hyperosmotic stress compared to wild type and showed elevated production of the mycotoxin sterigmatocystin (ST). Genome-wide expression analyses employing RNA-Seq have revealed that VadH is likely involved in regulating more genes and biological pathways in the developmental stages than those in the vegetative growth stage. The brlA, abaA, and wetA genes of the central regulatory pathway for conidiation are downregulated significantly in the vadH null mutant during asexual development. VadH also participates in regulating the genes, mat2, ppgA and lsdA, etc., related to sexual development, and some of the genes in the ST biosynthetic gene cluster. In summary, VadH is a putative transcription factor with four C2H2 finger domains and is involved in regulating asexual/sexual development, osmotic stress response, and ST production in A. nidulans.


Subject(s)
Aspergillus nidulans , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Aspergillus nidulans/genetics , Sterigmatocystin/metabolism , Gene Expression Regulation, Fungal , Osmoregulation , Fungal Proteins/metabolism
9.
Cells ; 11(18)2022 09 07.
Article in English | MEDLINE | ID: mdl-36139369

ABSTRACT

Aspergillus flavus is a representative fungal species in the Aspergillus section Flavi and has been used as a model system to gain insights into fungal development and toxin production. A. flavus has several adverse effects on humans, including the production of the most carcinogenic mycotoxin aflatoxins and causing aspergillosis in immune-compromised patients. In addition, A. flavus infection of crops results in economic losses due to yield loss and aflatoxin contamination. A. flavus is a saprophytic fungus that disperses in the ecosystem mainly by producing asexual spores (conidia), which also provide long-term survival in the harsh environmental conditions. Conidia are composed of the rodlet layer, cell wall, and melanin and are produced from an asexual specialized structure called the conidiophore. The production of conidiophores is tightly regulated by various regulators, including the central regulatory cascade composed of BrlA-AbaA-WetA, the fungi-specific velvet regulators, upstream regulators, and developmental repressors. In this review, we summarize the findings of a series of recent studies related to asexual development in A. flavus and provide insights for a better understanding of other fungal species in the section Flavi.


Subject(s)
Aflatoxins , Aspergillus flavus , Aspergillus flavus/metabolism , Ecosystem , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Humans , Melanins , Spores, Fungal
10.
Sci Rep ; 12(1): 15588, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36114253

ABSTRACT

Aspergillus spp. mainly reproduce asexually via asexual spores called conidia. In this study, we identified CsgA, a conidia-specific Zn2Cys6 transcription factor containing the GAL4-like zinc-finger domain, and characterized the roles of CsgA in the model organism Aspergillus nidulans. In A. nidulans, the ΔcsgA strain produced abnormal conidiophores and exhibited increased conidial production. The deletion of csgA resulted in impaired production of sexual fruiting bodies (cleistothecia) and lower mutA expression levels. Overexpression of csgA led to decreased conidia production but increased cleistothecia production, suggesting that CsgA is essential for proper asexual and sexual development in A. nidulans. In conidia, the deletion of csgA resulted in increased trehalose content, higher spore viability, and increased tolerance to thermal and oxidative stresses. Transcriptomic analysis revealed that the loss of csgA affects the expression of genes related to conidia germination, DNA repair, and secondary metabolite biosynthesis. Further analysis revealed that the ΔcsgA strain exhibited delayed conidial germination and abnormal germ tube length. Additionally, the production of sterigmatocystin increased in the ΔcsgA conidia compared to that in the controls. Overall, these results suggest that CsgA is crucial for proper fungal development, spore viability, conidial germination, and sterigmatocystin production in A. nidulans.


Subject(s)
Aspergillus nidulans , Aspergillus nidulans/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Spores, Fungal , Sterigmatocystin , Transcription Factors/genetics , Transcription Factors/metabolism , Trehalose/metabolism , Zinc/metabolism
11.
Fungal Biol ; 126(6-7): 421-428, 2022.
Article in English | MEDLINE | ID: mdl-35667829

ABSTRACT

The NF-ƙB-type VosA-VelB velvet complex acts as a global regulator governing development and metabolism in fungi. One of the VosA-VelB-activated developmental (VAD) genes called vadZ is predicted to encode a 557-amino acid protein containing a highly conserved GAL4-type Zn(II)2Cys6 (or C6 zinc) binuclear cluster DNA-binding domain in Aspergillus nidulans. In this report, we characterize the function of the vadZ gene in controlling development and sterigmatocystin (ST) production in A. nidulans. To verify VosA-VelB mediated activation of vadZ, we checked relative mRNA levels of vadZ in wild-type (WT), ΔvosA, and ΔvelB mutant strains during vegetative, asexual, and sexual development phases. At the beginning of asexual development, the absence of vosA led to a 66.2-fold lowered vadZ mRNA levels, whereas ΔvelB resulted in a 3.6-fold decrease in vadZ mRNA levels. The deletion of vadZ resulted in significantly restricted colony growth coupled with reduced asexual development, but increased formation of sexual fruiting bodies called cleistothecia. In addition, nullifying vadZ caused elevated mRNA levels of the two key sexual developmental activators esdC and nsdD throughout the lifecycle. Moreover, the ΔvadZ mutant showed elevated production of ST and enhanced mRNA levels of ST biosynthetic genes. In summary, the putative C6 transcription factor VadZ promotes asexual development and suppresses the sexual development and the ST production in A. nidulans.


Subject(s)
Aspergillus nidulans , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , RNA, Messenger , Spores, Fungal , Sterigmatocystin/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
12.
Antibiotics (Basel) ; 10(10)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34680766

ABSTRACT

Klebsiella pneumoniae is one of the important clinical organisms that causes various infectious diseases, including urinary tract infections, necrotizing pneumonia, and surgical wound infections. The increase in the incidence of multidrug-resistance K. pneumoniae is a major problem in public healthcare. Therefore, a novel antibacterial agent is needed to treat this pathogen. Here, we studied the in vitro and in vivo activities of a novel antibiotic LCB10-0200, a siderophore-conjugated cephalosporin, against clinical isolates of K. pneumoniae. In vitro susceptibility study found that LCB10-0200 showed potent antibacterial activity against K. pneumoniae, including the beta-lactamase producing strains. The in vivo efficacy of LCB10-0200 was examined in three different mouse infection models, including systemic, thigh, and urinary tract infections. LCB10-0200 showed more potent in vivo activity than ceftazidime in the three in vivo models against the drug-susceptible and drug-resistant K. pneumoniae strains. Taken together, these results show that LCB10-0200 is a potential antibacterial agent to treat infection caused by K. pneumoniae.

13.
J Microbiol ; 59(8): 746-752, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34219207

ABSTRACT

The VosA-VelB heterocomplex governs expression of several genes associated with fungal development and secondary metabolism. In this study, we have investigated the functions of one of the VosA-VelB-activated developmental genes vadJ in development and production of the mycotoxin sterigmatocystin in the model fungus Aspergillus nidulans. The vadJ gene is predicted to encode a 957-amino acid length protein containing a highly conserved sensor histidine kinase domain. The deletion of vosA or velB resulted in decreased mRNA levels of vadJ throughout the life cycle, suggesting that VosA and VelB are necessary for proper expression of vadJ. Nullifying vadJ led to highly restricted colony growth, lowered formation of asexual spores, and about two-fold reduction in conidial viability. Conversely, the deletion of vadJ resulted in elevated production of sexual fruiting bodies and sterigmatocystin. These suggest that VadJ is necessary for proper coordination of asexual and sexual development, and sterigmatocystin production. In accordance with this idea, the deletion of vadJ led to elevated mRNA levels of the two key sexual developmental activators esdC and nsdD. In summary, the putative sensor histidine kinase VadJ represses sexual development and sterigmatocystin production, but activates asexual development in A. nidulans.


Subject(s)
Aspergillus nidulans/enzymology , Aspergillus nidulans/growth & development , Fungal Proteins/metabolism , Histidine Kinase/metabolism , Sterigmatocystin/biosynthesis , Aspergillus nidulans/genetics , Aspergillus nidulans/metabolism , Fungal Proteins/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Fungal , Histidine Kinase/genetics
14.
Mycobiology ; 49(3): 258-266, 2021.
Article in English | MEDLINE | ID: mdl-34290549

ABSTRACT

The velvet regulators VosA and VelB are primarily involved in spore maturation and dormancy. Previous studies found that the VosA-VelB hetero-complex coordinates certain target genes that are related to fungal differentiation and conidial maturation in Aspergillus nidulans. Here, we characterized the VosA/VelB-inhibited developmental gene vidD in A. nidulans. Phenotypic analyses demonstrated that the vidD deleted mutant exhibited defect fungal growth, a reduced number of conidia, and delayed formation of sexual fruiting bodies. The deletion of vidD decreased the amount of conidial trehalose, increased the sensitivity against heat stress, and reduced the conidial viability. Moreover, the absence of vidD resulted in increased production of sterigmatocystin. Together, these results show that VidD is required for proper fungal growth, development, and sterigmatocystin production in A. nidulans.

15.
J Microbiol Biotechnol ; 31(5): 676-685, 2021 May 28.
Article in English | MEDLINE | ID: mdl-33746193

ABSTRACT

RNA-binding proteins are involved in RNA metabolism and posttranscriptional regulation of various fundamental biological processes. The PUF family of RNA-binding proteins is highly conserved in eukaryotes, and its members regulate gene expression, mitochondrial biogenesis, and RNA processing. However, their biological functions in Aspergillus species remain mostly unknown in filamentous fungi. Here we have characterized the puf genes in the model organism Aspergillus nidulans. We generated deletion mutant strains for the five putative puf genes present in the A. nidulans genome and investigated their developmental phenotypes. Deletion of pufA or pufE affected fungal growth and asexual development. pufA mutants exhibited decreased production of asexual spores and reduced mRNA expression of genes regulating asexual development. The pufE deletion reduced colony growth, increased formation of asexual spores, and delayed production of sexual fruiting bodies. In addition, the absence of pufE reduced both sterigmatocystin production and the mRNA levels of genes in the sterigmatocystin cluster. Finally, pufE deletion mutants showed reduced trehalose production and lower resistance to thermal stress. Overall, these results demonstrate that PufA and PufE play roles in the development and sterigmatocystin metabolism in A. nidulans.


Subject(s)
Aspergillus nidulans/growth & development , Aspergillus nidulans/metabolism , Fungal Proteins/metabolism , RNA-Binding Proteins/metabolism , Aspergillus nidulans/genetics , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Mutation , Protein Domains , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , Spores, Fungal/genetics , Spores, Fungal/growth & development , Sterigmatocystin/biosynthesis , Thermotolerance/genetics , Trehalose/metabolism
16.
mBio ; 12(1)2021 02 09.
Article in English | MEDLINE | ID: mdl-33563821

ABSTRACT

In filamentous fungi, asexual development involves cellular differentiation and metabolic remodeling leading to the formation of intact asexual spores. The development of asexual spores (conidia) in Aspergillus is precisely coordinated by multiple transcription factors (TFs), including VosA, VelB, and WetA. Notably, these three TFs are essential for the structural and metabolic integrity, i.e., proper maturation, of conidia in the model fungus Aspergillus nidulans To gain mechanistic insight into the complex regulatory and interdependent roles of these TFs in asexual sporogenesis, we carried out multi-omics studies on the transcriptome, protein-DNA interactions, and primary and secondary metabolism employing A. nidulans conidia. RNA sequencing and chromatin immunoprecipitation sequencing analyses have revealed that the three TFs directly or indirectly regulate the expression of genes associated with heterotrimeric G-protein signal transduction, mitogen-activated protein (MAP) kinases, spore wall formation and structural integrity, asexual development, and primary/secondary metabolism. In addition, metabolomics analyses of wild-type and individual mutant conidia indicate that these three TFs regulate a diverse array of primary metabolites, including those in the tricarboxylic acid (TCA) cycle, certain amino acids, and trehalose, and secondary metabolites such as sterigmatocystin, emericellamide, austinol, and dehydroaustinol. In summary, WetA, VosA, and VelB play interdependent, overlapping, and distinct roles in governing morphological development and primary/secondary metabolic remodeling in Aspergillus conidia, leading to the production of vital conidia suitable for fungal proliferation and dissemination.IMPORTANCE Filamentous fungi produce a vast number of asexual spores that act as efficient propagules. Due to their infectious and/or allergenic nature, fungal spores affect our daily life. Aspergillus species produce asexual spores called conidia; their formation involves morphological development and metabolic changes, and the associated regulatory systems are coordinated by multiple transcription factors (TFs). To understand the underlying global regulatory programs and cellular outcomes associated with conidium formation, genomic and metabolomic analyses were performed in the model fungus Aspergillus nidulans Our results show that the fungus-specific WetA/VosA/VelB TFs govern the coordination of morphological and chemical developments during sporogenesis. The results of this study provide insights into the interdependent, overlapping, or distinct genetic regulatory networks necessary to produce intact asexual spores. The findings are relevant for other Aspergillus species such as the major human pathogen Aspergillus fumigatus and the aflatoxin producer Aspergillus flavus.


Subject(s)
Aspergillus nidulans/genetics , Aspergillus nidulans/metabolism , Gene Expression Profiling , Genes, Fungal , Metabolomics , Spores, Fungal/genetics , Spores, Fungal/metabolism , Aspergillus nidulans/growth & development , Gene Deletion , Gene Expression Regulation, Fungal , Gene Regulatory Networks , Proteomics , Reproduction, Asexual/genetics , Spores, Fungal/growth & development , Transcriptome
17.
Microorganisms ; 9(1)2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33440846

ABSTRACT

Homeobox transcription factors are conserved in eukaryotes and act as multi-functional transcription factors in filamentous fungi. Previously, it was demonstrated that HbxB governs fungal development and spore viability in Aspergillus nidulans. Here, the role of HbxB in A. nidulans was further characterized. RNA-sequencing revealed that HbxB affects the transcriptomic levels of genes associated with trehalose biosynthesis and response to thermal, oxidative, and radiation stresses in asexual spores called conidia. A phenotypic analysis found that hbxB deletion mutant conidia were more sensitive to ultraviolet stress. The loss of hbxB increased the mRNA expression of genes associated with ß-glucan degradation and decreased the amount of ß-glucan in conidia. In addition, hbxB deletion affected the expression of the sterigmatocystin gene cluster and the amount of sterigmatocystin. Overall, these results indicated that HbxB is a key transcription factor regulating trehalose biosynthesis, stress tolerance, ß-glucan degradation, and sterigmatocystin production in A. nidulans conidia.

18.
Mycobiology ; 49(2): 95-104, 2021.
Article in English | MEDLINE | ID: mdl-37970179

ABSTRACT

Species of the genus Aspergillus have a variety of effects on humans and have been considered industrial cell factories due to their prominent ability for manufacturing several products such as heterologous proteins, secondary metabolites, and organic acids. Scientists are trying to improve fungal strains and re-design metabolic processes through advanced genetic manipulation techniques and gene delivery systems to enhance their industrial efficiency and utility. In this review, we describe the current status of the genetic manipulation techniques and transformation methods for species of the genus Aspergillus. The host strains, selective markers, and experimental materials required for the genetic manipulation and fungal transformation are described in detail. Furthermore, the advantages and disadvantages of these techniques are described.

19.
Pathogens ; 9(11)2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33126739

ABSTRACT

The heterotrimeric G-protein (G-protein) signaling pathway is one of the most important signaling pathways that transmit external signals into the inside of the cell, triggering appropriate biological responses. The external signals are sensed by various G-protein-coupled receptors (GPCRs) and transmitted into G-proteins consisting of the α, ß, and γ subunits. Regulators of G-protein signaling (RGSs) are the key controllers of G-protein signaling pathways. GPCRs, G-proteins, and RGSs are the primary upstream components of the G-protein signaling pathway, and they are highly conserved in most filamentous fungi, playing diverse roles in biological processes. Recent studies characterized the G-protein signaling components in the opportunistic pathogenic fungus Aspergillus fumigatus. In this review, we have summarized the characteristics and functions of GPCRs, G-proteins, and RGSs, and their regulatory roles in governing fungal growth, asexual development, germination, stress tolerance, and virulence in A. fumigatus.

20.
Microorganisms ; 8(9)2020 Aug 30.
Article in English | MEDLINE | ID: mdl-32872591

ABSTRACT

In the Aspergillus species, conidia are asexual spores that are infectious particles responsible for propagation. Conidia contain various mycotoxins that can have detrimental effects in humans. Previous study demonstrated that VadA is required for fungal development and spore viability in the model fungus Aspergillus nidulans. In the present study, vadA transcriptomic analysis revealed that VadA affects the mRNA expression of a variety of genes in A. nidulans conidia. The genes that were primarily affected in conidia were associated with trehalose biosynthesis, cell-wall integrity, stress response, and secondary metabolism. Genetic changes caused by deletion of vadA were related to phenotypes of the vadA deletion mutant conidia. The deletion of vadA resulted in increased conidial sensitivity against ultraviolet stress and induced germ tube formation in the presence and absence of glucose. In addition, most genes in the secondary metabolism gene clusters of sterigmatocystin, asperfuranone, monodictyphenone, and asperthecin were upregulated in the mutant conidia with vadA deletion. The deletion of vadA led to an increase in the amount of sterigmatocystin in the conidia, suggesting that VadA is essential for the repression of sterigmatocystin production in conidia. These results suggest that VadA coordinates conidia maturation, stress response, and secondary metabolism in A. nidulans conidia.

SELECTION OF CITATIONS
SEARCH DETAIL
...