Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Rep ; 12(13): e16137, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38969625

ABSTRACT

Post-traumatic stress disorder (PTSD) is associated with increased cardiovascular disease (CVD) risk. Compared with males, females are twice as likely to develop PTSD after trauma exposure, and cardiovascular reactivity to stress is a known risk factor for CVD. We aimed to examine hemodynamic responses to acute mental stress in trauma-exposed females with and without a clinical diagnosis of PTSD. We hypothesized that females with PTSD would have higher heart rate (HR), blood pressure (BP), and lower blood flow velocity (BFV) responsiveness compared with controls. We enrolled 21 females with PTSD and 21 trauma-exposed controls. We continuously measured HR using a three-lead electrocardiogram, BP using finger plethysmography, and brachial BFV using Doppler ultrasound. All variables were recorded during 10 min of supine rest, 5 min of mental arithmetic, and 5 min of recovery. Females with PTSD were older, and had higher BMI and higher resting diastolic BP. Accordingly, age, BMI, and diastolic BP were covariates for all repeated measures analyses. Females with PTSD had a blunted brachial BFV response to mental stress (time × group, p = 0.005) compared with controls, suggesting greater vasoconstriction. HR and BP responses were comparable. In conclusion, our results suggest early impairment of vascular function in premenopausal females with PTSD.


Subject(s)
Blood Pressure , Brachial Artery , Heart Rate , Stress Disorders, Post-Traumatic , Stress, Psychological , Humans , Female , Adult , Stress Disorders, Post-Traumatic/physiopathology , Stress Disorders, Post-Traumatic/diagnostic imaging , Stress, Psychological/physiopathology , Brachial Artery/physiopathology , Brachial Artery/diagnostic imaging , Blood Flow Velocity/physiology , Heart Rate/physiology , Blood Pressure/physiology , Middle Aged
2.
medRxiv ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38699306

ABSTRACT

Background: Chronic kidney disease (CKD) is characterized by overactivation of the sympathetic nervous system (SNS) that leads to increased cardiovascular disease risk. Despite the deleterious consequences of SNS overactivity, there are very few therapeutic options available to combat sympathetic overactivity. Aim: To evaluate the effects of Mindfulness-Based Stress Reduction (MBSR) on SNS activity in CKD patients. Method: Participants with CKD stages III-IV were randomized to an 8-week MBSR program or Health Education Program (HEP; a structurally parallel, active control group). Primary outcomes were direct intraneural measures of SNS activity directed to muscle (MSNA) via microneurography at rest and during stress maneuvers. Results: 28 participants (63 ±9 years; 86% males) completed the intervention with 16 in MBSR and 12 in HEP. There was a significant Group (MBSR vs. HEP) by Time (baseline vs. post-intervention) interaction in the change in MSNA reactivity to mental stress (p=0.026), with a significant reduction in the mean change in MSNA over 3 minutes of mental arithmetic at post-intervention (10.6 ± 7.1 to 5.0 ± 5.7 bursts/min, p<0.001), while no change was observed within the HEP group (p=0.773). Conclusions: In this randomized controlled trial, patients with CKD had an amelioration of sympathetic reactivity during mental stress following 8-weeks of MBSR but not after HEP. Our findings demonstrate that mindfulness training is feasible and may have clinically beneficial effects on autonomic function in CKD.

3.
Physiol Rep ; 12(7): e15998, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570312

ABSTRACT

Chronic kidney disease (CKD) is characterized by an elevated risk for cerebrovascular disease including stroke. One mechanism that may contribute to this heightened risk is an impairment in cerebrovascular carbon dioxide reactivity (CVR). We compared CVR between CKD patients stages III-IV and controls (CON) without CKD but matched for hypertension and diabetes status. CVR was measured via 5% CO2 inhalation followed by voluntary hyperventilation in 14 CKD and 11 CON participants while mean arterial pressure, end-tidal carbon dioxide, and middle cerebral artery blood velocity (MCAv) were measured continuously. CVR was quantified as the linear relationship between etCO2 and MCAv. We observed no difference in CVR between groups. Hypercapnic CVR: CKD = 1.2 ± 0.9 cm/s/mm Hg, CON = 1.3 ± 0.8 cm/s/mm Hg, hypocapnic CVR: CKD = 1.3 ± 0.9 cm/s/mm Hg, CON = 1.5 ± 0.7 cm/s/mm Hg, integrated CVR: CKD = 1.5 ± 1.1 cm/s/mm Hg, CON = 1.7 ± 0.8 cm/s/mm Hg, p ≥ 0.48. Unexpectedly, CVR was inversely related to estimated glomerular filtration rate in CKD (R2 = 0.37, p = 0.02). We report that CVR remains intact in CKD and is inversely related to eGFR. These findings suggest that other mechanisms beyond CVR contribute to the elevated stroke risk observed in CKD.


Subject(s)
Renal Insufficiency, Chronic , Stroke , Humans , Carbon Dioxide , Blood Flow Velocity , Cerebrovascular Circulation
4.
Am J Physiol Renal Physiol ; 326(4): F661-F668, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38385174

ABSTRACT

Chronic kidney disease (CKD) is characterized by sympathetic nervous system (SNS) overactivity that contributes to increased vascular stiffness and cardiovascular risk. Although it is well established that SNS activity and vascular stiffness are substantially elevated in CKD, whether sex differences in autonomic and vascular function exist in CKD remains unknown. We tested the hypothesis that compared with females, males with CKD have higher baseline sympathetic activity that is related to increased arterial stiffness. One hundred twenty-nine participants (96 males and 33 females) with CKD stages III and IV were recruited and enrolled. During two separate study visits, vascular stiffness was assessed by measuring carotid-to-femoral pulse wave velocity (cfPWV), and resting muscle sympathetic nerve activity (MSNA) was measured by microneurography. Males with CKD had higher resting MSNA compared with females with CKD (68 ± 16 vs. 55 ± 14 bursts/100 heart beats, P = 0.005), whereas there was no difference in cfPWV between the groups (P = 0.248). Resting MSNA was not associated with cfPWV in both males and females. In conclusion, males with CKD have higher resting sympathetic activity compared with females with CKD. However, there was no difference in vascular stiffness between the sexes. There was no correlation between resting MSNA and cfPWV, suggesting that non-neural mechanisms may play a greater role in the progression of vascular stiffness in CKD, particularly in females.NEW & NOTEWORTHY Males with chronic kidney disease (CKD) have higher resting muscle sympathetic nerve activity (MSNA) compared with females. There was no correlation between MSNA and carotid-to-femoral pulse wave velocity (cfPWV), suggesting that non-neural mechanisms may play a greater role in the progression of vascular stiffness in CKD. Sex differences in SNS activity may play a mechanistic role in observations from epidemiological studies suggesting greater cardiovascular risk in males compared with females with CKD.


Subject(s)
Renal Insufficiency, Chronic , Vascular Stiffness , Adult , Humans , Male , Female , Pulse Wave Analysis , Sex Characteristics , Heart Rate , Sympathetic Nervous System , Renal Insufficiency, Chronic/diagnosis , Vascular Stiffness/physiology , Blood Pressure
5.
Microvasc Res ; 151: 104624, 2024 01.
Article in English | MEDLINE | ID: mdl-37926135

ABSTRACT

Vascular impairment is closely related to increased mortality in chronic kidney disease (CKD). The objective of this study was to assess impairments in the regulation of peripheral microvascular perfusion in patients with CKD based on time-frequency spectral analysis of resting near-infrared spectroscopy (NIRS) signals. Total hemoglobin (tHb) concentration and tissue saturation index (TSI) signals were collected using NIRS for a continuous 5 mins at 10 Hz from the forearm of 55 participants (34 CKD including 5 with end-stage renal disease, and 21 age-matched control). Continuous wavelet transform-based spectral analysis was used to quantify the spectral amplitude within five pre-defined frequency intervals (I, 0.0095-0.021 Hz; II, 0.021-0.052 Hz; III, 0.052-0.145 Hz; IV, 0.145-0.6 Hz and V, 0.6-2.0 Hz), representing endothelial, neurogenic, myogenic, respiratory and heartbeat activity, respectively. CKD patients showed lower tHb average spectral amplitude within the neurogenic frequency interval compared with controls (p = 0.014), consistent with an increased sympathetic outflow observed in CKD. CKD patients also showed lower TSI average spectral amplitude within the endothelial frequency interval compared with controls (p = 0.046), consistent with a reduced endothelial function in CKD. These findings demonstrate the potential of wavelet analysis of NIRS to provide complementary information on peripheral microvascular regulation in CKD.


Subject(s)
Kidney Failure, Chronic , Wavelet Analysis , Humans , Spectroscopy, Near-Infrared , Microcirculation
SELECTION OF CITATIONS
SEARCH DETAIL