Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 169
Filter
1.
World J Gastroenterol ; 30(7): 714-727, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38515951

ABSTRACT

BACKGROUND: Pancreatic cancer is a leading cause of cancer-related deaths. Increased activity of the epidermal growth factor receptor (EGFR) is often observed in pancreatic cancer, and the small molecule EGFR inhibitor erlotinib has been approved for pancreatic cancer therapy by the food and drug administration. Nevertheless, erlotinib alone is ineffective and should be combined with other drugs to improve therapeutic outcomes. We previously showed that certain receptor tyrosine kinase inhibitors can increase mitochondrial membrane potential (Δψm), facilitate tumor cell uptake of Δψm-sensitive agents, disrupt mitochondrial homeostasis, and subsequently trigger tumor cell death. Erlotinib has not been tested for this effect. AIM: To determine whether erlotinib can elevate Δψm and increase tumor cell uptake of Δψm-sensitive agents, subsequently triggering tumor cell death. METHODS: Δψm-sensitive fluorescent dye was used to determine how erlotinib affects Δψm in pancreatic adenocarcinoma (PDAC) cell lines. The viability of conventional and patient-derived primary PDAC cell lines in 2D- and 3D cultures was measured after treating cells sequentially with erlotinib and mitochondria-targeted ubiquinone (MitoQ), a Δψm-sensitive MitoQ. The synergy between erlotinib and MitoQ was then analyzed using SynergyFinder 2.0. The preclinical efficacy of the two-drug combination was determined using immune-compromised nude mice bearing PDAC cell line xenografts. RESULTS: Erlotinib elevated Δψm in PDAC cells, facilitating tumor cell uptake and mitochondrial enrichment of Δψm-sensitive agents. MitoQ triggered caspase-dependent apoptosis in PDAC cells in culture if used at high doses, while erlotinib pretreatment potentiated low doses of MitoQ. SynergyFinder suggested that these drugs synergistically induced tumor cell lethality. Consistent with in vitro data, erlotinib and MitoQ combination suppressed human PDAC cell line xenografts in mice more effectively than single treatments of each agent. CONCLUSION: Our findings suggest that a combination of erlotinib and MitoQ has the potential to suppress pancreatic tumor cell viability effectively.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Humans , Animals , Mice , Erlotinib Hydrochloride/pharmacology , Erlotinib Hydrochloride/therapeutic use , Pancreatic Neoplasms/pathology , Cell Survival , Adenocarcinoma/pathology , Mice, Nude , Ubiquinone/pharmacology , Ubiquinone/therapeutic use , Quinazolines , Cell Line, Tumor , ErbB Receptors , Mitochondria/pathology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Cell Proliferation
2.
NPJ Precis Oncol ; 8(1): 39, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378752

ABSTRACT

Genetic alternation of REarranged during Transfection (RET) that leads to constitutive RET activation is a crucial etiological factor for thyroid cancer. RET is known to regulate mitochondrial processes, although the underlying molecular mechanisms remain unclear. We previously showed that the multi-kinase inhibitors vandetanib and cabozantinib increase the mitochondrial membrane potential (Δψm) in RET-mutated thyroid tumor cells and that this effect can be exploited to increase mitochondrial enrichment of Δψm-sensitive agents in the tumor cells. In this study, we hypothesized that the RET-selective inhibitor, selpercatinib, can increase Δψm and, subsequently, tumor cell uptake of the mitochondria-targeted ubiquinone (MitoQ) to the level to break the mitochondrial homeostasis and induce lethal responses in RET-mutated thyroid tumor cells. We show that selpercatinib significantly increased Δψm, and its combination with MitoQ synergistically suppressed RET-mutated human thyroid tumor cells, which we validated using RET-targeted genetic approaches. Selpercatinib and MitoQ, in combination, also suppressed CCDC6-RET fusion cell line xenografts in mice and prolonged animal survival more effectively than single treatments of each agent. Moreover, we treated two patients with CCDC6-RET or RETM918T thyroid cancer, who could not take selpercatinib at regular doses due to adverse effects, with a dose-reduced selpercatinib and MitoQ combination. In response to this combination therapy, both patients showed tumor reduction. The quality of life of one patient significantly improved over a year until the tumor relapsed. This combination of selpercatinib with MitoQ may have therapeutic potential for patients with RET-mutated tumors and intolerant to regular selpercatinib doses.

3.
Int J Mol Sci ; 25(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38256205

ABSTRACT

Powdery mildew caused by Podosphaera xanthii is a serious fungal disease which causes severe damage to melon production. Unlike with chemical fungicides, managing this disease with resistance varieties is cost effective and ecofriendly. But, the occurrence of new races and a breakdown of the existing resistance genes poses a great threat. Therefore, this study aimed to identify the resistance locus responsible for conferring resistance against P. xanthii race KN2 in melon line IML107. A bi-parental F2 population was used in this study to uncover the resistance against race KN2. Genetic analysis revealed the resistance to be monogenic and controlled by a single dominant gene in IML107. Initial marker analysis revealed the position of the gene to be located on chromosome 2 where many of the resistance gene against P. xanthii have been previously reported. Availability of the whole genome of melon and its R gene analysis facilitated the identification of a F-box type Leucine Rich Repeats (LRR) to be accountable for the resistance against race KN2 in IML107. The molecular marker developed in this study can be used for marker assisted breeding programs.


Subject(s)
Ascomycota , Plant Breeding , Genes, Dominant , Erysiphe
4.
Health Phys ; 126(2): 79-95, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37948057

ABSTRACT

ABSTRACT: Following unforeseen exposure to radiation, quick dose determination is essential to prioritize potential patients that require immediate medical care. L-band electron paramagnetic resonance tooth dosimetry can be efficiently used for rapid triage as this poses no harm to the human incisor, although geometric variations among human teeth may hinder accurate dose estimation. Consequently, we propose a practical geometric correction method using a mobile phone camera. Donated human incisors were irradiated with calibrated 6-MV photon beam irradiation, and dose-response curves were developed by irradiation with a predetermined dose using custom-made poly(methyl methacrylate) slab phantoms. Three radiation treatment plans for incisors were selected and altered to suit the head phantom. The mean doses on tooth structures were calculated using a commercial treatment planning system, and the electron paramagnetic resonance signals of the incisors were measured. The enamel area was computed from camera-acquired tooth images. The relative standard uncertainty was rigorously estimated both with and without geometric correction. The effects on the electron paramagnetic resonance signal caused by axial and rotational movements of tooth samples were evaluated through finite element analysis. The mean absolute deviations of mean doses both with and without geometric correction showed marginal improvement. The average relative differences without and with geometric correction significantly decreased from 21.0% to 16.8% (p = 0.01). The geometric correction method shows potential in improving dose precision measurement with minimal delay. Furthermore, our findings demonstrated the viability of using treatment planning system doses in dose estimation for L-band electron paramagnetic resonance tooth dosimetry.


Subject(s)
Radiometry , Tooth , Humans , Electron Spin Resonance Spectroscopy/methods , Radiometry/methods , Tooth/radiation effects , Triage , Image Processing, Computer-Assisted
5.
Int J Mol Sci ; 24(19)2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37834284

ABSTRACT

BRAF is one of the most frequently mutated oncogenes, with an overall frequency of about 50%. Targeting BRAF and its effector mitogen-activated protein kinase kinase 1/2 (MEK1/2) is now a key therapeutic strategy for BRAF-mutant tumors, and therapies based on dual BRAF/MEK inhibition showed significant efficacy in a broad spectrum of BRAF tumors. Nonetheless, BRAF/MEK inhibition therapy is not always effective for BRAF tumor suppression, and significant challenges remain to improve its clinical outcomes. First, certain BRAF tumors have an intrinsic ability to rapidly adapt to the presence of BRAF and MEK1/2 inhibitors by bypassing drug effects via rewired signaling, metabolic, and regulatory networks. Second, almost all tumors initially responsive to BRAF and MEK1/2 inhibitors eventually acquire therapy resistance via an additional genetic or epigenetic alteration(s). Overcoming these challenges requires identifying the molecular mechanism underlying tumor cell resistance to BRAF and MEK inhibitors and analyzing their specificity in different BRAF tumors. This review aims to update this information.


Subject(s)
Protein Kinase Inhibitors , Proto-Oncogene Proteins B-raf , Proto-Oncogene Proteins B-raf/metabolism , MAP Kinase Kinase 1/genetics , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Signal Transduction , Drug Resistance, Neoplasm/genetics , Mutation
6.
Plant Pathol J ; 39(5): 494-503, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37817495

ABSTRACT

Xanthomonas campestris pv. campestris (Xcc) is a plant pathogen of Brassica crops that causes black rot disease throughout the world. At present, 11 physiological races of Xcc (races 1-11) have been reported. The conventional method of using differential cultivars for Xcc race detection is not accurate and it is laborious and time-consuming. Therefore, the development of specific molecular markers has been used as a substitute tool because it offers an accurate and reliable result, particularly a quick diagnosis of Xcc races. Previously, our laboratory has successfully developed race-specific molecular markers for Xcc races 1-6. In this study, specific molecular markers to identify Xcc race 7 have been developed. In the course of study, whole genome sequences of several Xcc races, X. campestris pv. incanae, X. campestris pv. raphani, and X. campestris pv. vesicatoria were aligned to identify variable regions like sequence-characterized amplified regions and insertions and deletions specific to race 7. Primer pairs were designed targeting these regions and validated against 22 samples. The polymerase chain reaction analysis revealed that three primer pairs specifically amplified the DNA fragment corresponding to race 7. The obtained finding clearly demonstrates the efficiency of the newly developed markers in accurately detecting Xcc race 7 among the other races. These results indicated that the newly developed marker can successfully and rapidly detect Xcc race 7 from other races. This study represents the first report on the successful development of specific molecular markers for Xcc race 7.

7.
Health Phys ; 125(5): 352-361, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37565831

ABSTRACT

ABSTRACT: We aim to develop a dose assessment method compensating for quality factors (Q factor) observed during in vivo EPR tooth dosimetry. A pseudo-in-vivo phantom made of tissue-equivalent material was equipped with one each of four extracted human central incisors. A range of Q factors was measured at tooth-depths of -2, 0, and 2 mm in the pseudo-in-vivo phantom. In addition, in vivo Q factors were measured from nine human volunteers. For the dose-response data, the above four sample teeth were irradiated at 0, 1, 2, 5, and 10 Gy, and the radiation-induced signals were measured at the same tooth-depths using an in vivo EPR tooth dosimetry system. To validate the method, the signals of two post-radiotherapy patients and three unirradiated volunteers were measured using the same system. The interquartile range of the Q factors measured in the pseudo-in-vivo phantom covered that observed from the human volunteers, which implied that the phantom represented the Q factor distribution of in vivo conditions. The dosimetric sensitivities and background signals were decreased as increasing the tooth-depth in the phantom due to the decrease in Q factors. By compensating for Q factors, the diverged dose-response data due to various Q factors were converged to improve the dosimetric accuracy in terms of the standard error of inverse prediction (SEIP). The Q factors of patient 1 and patient 2 were 98 and 64, respectively, while the three volunteers were 100, 92, and 99. The assessed doses of patient 1 and patient 2 were 2.73 and 12.53 Gy, respectively, while expecting 4.43 and 13.29 Gy, respectively. The assessed doses of the unirradiated volunteers were 0.53, 0.50, and - 0.22 Gy. We demonstrated that the suggested Q factor compensation could mitigate the uncertainty induced by the variation of Q factors.


Subject(s)
Radiometry , Tooth , Humans , Electron Spin Resonance Spectroscopy/methods , Radiometry/methods , Relative Biological Effectiveness
8.
Int J Mol Sci ; 24(11)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37298618

ABSTRACT

The name extracellular signal-regulated kinase (ERK) was first used for a cell cycle regulating Ser/Thr protein kinase cloned in mammalian cells [...].


Subject(s)
Extracellular Signal-Regulated MAP Kinases , Signal Transduction , Animals , Extracellular Signal-Regulated MAP Kinases/metabolism , Signal Transduction/physiology , MAP Kinase Signaling System/physiology , Phosphorylation , Mammals/metabolism
9.
Plants (Basel) ; 12(7)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37050174

ABSTRACT

The reproductive stage of cotton (Gossypium sp.) is highly sensitive to waterlogging. The identification of potential elite upland cotton (Gossypium hirsutum) cultivar(s) having higher waterlogging tolerance is crucial to expanding cotton cultivation in the low-lying areas. The present study was designed to investigate the effect of waterlogging on the reproductive development of four elite upland cotton cultivars, namely, Rupali-1, CB-12, CB-13, and DM-3, against four waterlogging durations (e.g., 0, 3, 6, and 9-day). Waterlogging stress significantly impacted morpho-physiological, biochemical, and yield attributes of cotton. Two cotton cultivars, e.g., CB-12 and Rupali-1, showed the lowest reduction in plant height (6 and 9%, respectively) and boll weight (8 and 5%, respectively) at the highest waterlogging duration of 9 days. Physiological and biochemical data revealed that higher leaf chlorophyll, proline, and relative water contents, and lower malondialdehyde contents, particularly in CB-12 and Rupali-1, were positively correlated with yield. Notably, CB-12 and Rupali-1 had higher seed cotton weight (90.34 and 83.10 g, respectively), lint weight (40.12 and 39.32 g, respectively), and seed weight (49.47 and 43.78 g, respectively) per plant than CB-13 and DM-3 in response to the highest duration of waterlogging of 9 days. Moreover, extensive multivariate analyses like Spearman correlation and the principle component analysis revealed that CB-12 and Rupali-1 had greater coefficients in yield and physiological attributes at 9-day waterlogging, whereas CB-13 and DM-3 were sensitive cultivars in response to the same levels of waterlogging. Thus, CB-12 and Rupali-1 might be well adapted to the low-lying waterlogging-prone areas for high and sustained yield.

10.
Front Cell Dev Biol ; 11: 1196430, 2023.
Article in English | MEDLINE | ID: mdl-37113770
11.
BMC Complement Med Ther ; 23(1): 73, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36879223

ABSTRACT

OBJECTIVE: The objective of this study was to determine the effect of music therapy as an alternative treatment on depression in children and adolescents with attention-deficit hyperactivity disorder (ADHD) by activating serotonin (5-HT) and improving stress coping ability. METHODS: This study is designed based on randomization method. A total of 36 subjects participated in the experiment, consisting of an ADHD control group (n = 18) and ADHD music therapy group (n = 18). The ADHD control group received standard care, while the ADHD music therapy group received music therapy and standard care. The ADHD music therapy group received both active music therapy (improvisation) and receptive music therapy (music listening) for 50 minutes, twice a week, for 3 months: a total of 24 times. From a neurophysiological perspective, changes in depression and stress were tracked by measuring 5-HT secretion, cortisol expression, blood pressure (BP), heart rate (HR), and CDI and DHQ psychological scales. RESULTS: The ADHD music therapy group's 5-HT secretion increased (p < 0.001), whereas cortisol expression (p < 0.001), BP (p < 0.001) and HR (p < 0.001) decreased. The CDI and DHQ psychological scales also showed positive changes (p < 0.01 and p < 0.001, respectively). However, the ADHD Con G's (who did not receive music therapy) 5-HT secretion did not increase, whereas cortisol expression, BP, and HR did not decrease. In addition, the CDI and DHQ psychological scales did not display positive changes. CONCLUSIONS: In conclusion, the application of music therapy as an alternative treatment for ADHD children and adolescents showed positive neurophysiological and psychological effects. Therefore, this study would like to propose a new alternative to medicine for preventing and treating depression through various uses of music therapy.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Music Therapy , Adolescent , Child , Humans , Adaptation, Psychological , Attention Deficit Disorder with Hyperactivity/therapy , Depression/therapy , Hydrocortisone , Serotonin
12.
Ann Surg ; 277(2): e366-e375, 2023 02 01.
Article in English | MEDLINE | ID: mdl-34387201

ABSTRACT

OBJECTIVE: We sought to investigate the biological effects of pre-reperfusion treatments of the liver after warm and cold ischemic injuries in a porcine donation after circulatory death model. SUMMARY OF BACKGROUND DATA: Donation after circulatory death represents a severe form of liver ischemia and reperfusion injury that has a profound impact on graft function after liver transplantation. METHODS: Twenty donor pig livers underwent 60 minutes of in situ warm ischemia after circulatory arrest and 120 minutes of cold static preservation prior to simulated transplantation using an ex vivo perfusion machine. Four reperfusion treatments were compared: Control-Normothermic (N), Control- Subnormothermic (S), regulated hepatic reperfusion (RHR)-N, and RHR-S (n = 5 each). The biochemical, metabolic, and transcriptomic profiles, as well as mitochondrial function were analyzed. RESULTS: Compared to the other groups, RHR-S treated group showed significantly lower post-reperfusion aspartate aminotransferase levels in the reperfusion effluent and histologic findings of hepatocyte viability and lesser degree of congestion and necrosis. RHR-S resulted in a significantly higher mitochondrial respiratory control index and calcium retention capacity. Transcriptomic profile analysis showed that treatment with RHR-S activated cell survival and viability, cellular homeostasis as well as other biological functions involved in tissue repair such as cytoskeleton or cytoplasm organization, cell migration, transcription, and microtubule dynamics. Furthermore, RHR-S inhibited organismal death, morbidity and mortality, necrosis, and apoptosis. CONCLUSION: Subnormothermic RHR mitigates IRI and preserves hepatic mitochondrial function after warm and cold hepatic ischemia. This organ resuscitative therapy may also trigger the activation of protective genes against IRI. Sub- normothermic RHR has potential applicability to clinical liver transplantation.


Subject(s)
Organ Preservation , Transcriptome , Swine , Animals , Organ Preservation/methods , Liver/pathology , Reperfusion , Ischemia , Necrosis/metabolism , Necrosis/pathology
13.
Biochem Genet ; 61(2): 451-470, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36057909

ABSTRACT

Glucosinolates (GSLs) and GSL-associated genes are receiving increasing attention from molecular biologists due to their multifunctional properties. GSLs are secondary metabolites considered to be highly active in most Brassica species. Their importance has motivated the discovery and functional analysis of the GSLs and GSL hydrolysis products involved in disease development in brassicas and other plants. Comprehensive knowledge of the GSL content of Brassica species and the molecular details of GSL-related genes will help elucidate the molecular control of this plant defense system. This report provides an overview of the current status of knowledge on GSLs, GSL biosynthesis, as well as hydrolysis related genes, and GSL hydrolysis products that regulate fungal, bacterial, and insect resistance in cabbage and other brassicas.


Subject(s)
Brassica , Brassica/genetics , Brassica/metabolism , Glucosinolates/genetics , Glucosinolates/metabolism
14.
Front Nutr ; 9: 1051828, 2022.
Article in English | MEDLINE | ID: mdl-36570158

ABSTRACT

Objectives: To determine whether drinking coffee with caffeine accelerates the sympathetic response to acetylcholine (ACh). Methods: Tests were performed twice at 1-week intervals following the intake of coffee. Subjects were randomly divided into two groups: Group A was administered 16 fluid oz of water (CON), while Group B was given 16 fluid oz of coffee (Coffee). After 1 week, Group A was administered 16 fluid oz of coffee (Coffee), while Group B was given 16 fluid oz of water (CON). The quantitative sudomotor axon reflex test (QSART) was performed after intake of coffee and water and a 40 min break. QSART with iontophoresis and 10% ACh was performed to determine axon reflex (AXR) mediated with and without iontophoresis [AXR (1) and AXR (2), respectively], and directly activated sweating (DIR). Results: The sweat onset time of the AXR was shorter in the Coffee compared with the CON (p < 0.05). The sweat rates in AXR (1) AXR (2) and DIR were significantly higher in the Coffee than in the CON (p < 0.05, p < 0.05, p < 0.01, respectively). In addition, the Coffee showed significantly higher density of activated sweat glands and activated sweat gland output than the CON (p < 0.05, p < 0.01, respectively). The overall results of this study showed that coffee intake could stimulate higher activation in both AXR and DIR sweat responses. Conclusion: Coffee intake can improve sweating sensitivity in both the AXR and DIR by the contribution of caffeine contained in coffee. This suggests that other compounds in coffee may not inhibit the sympathetic response to ACh. Therefore, coffee may be clinically worth considering as a supplement for the activation of the cholinergic and sudomotor function.

15.
Food Sci Biotechnol ; 31(9): 1207-1212, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35615306

ABSTRACT

Caffeine and orexin can affect awakening, neuroendocrine, and sympathetic nerve function. Our previous study has reported that caffeine intake can increase human body temperature. However, little is known about the combined effects of thermotherapy and caffeine intake on human serum orexin concentrations. Forty-two healthy male subjects with age of 26.72 ± 5.05 years, height of 174.10 ± 7.09 cm, and body weight of 74.68 ± 8.91 kg participated in this study. They were randomly assigned to a control (CON) group (n = 21) and a caffeine (CAFF) group (n = 21). After thermotherapy (half-body immersion in a hot water bath at 42 ± 0.5 °C, circulating orexin level increased more (p < 0.05) in the CAFF group than in the CON group. Positive relationships between mean body temperature and orexin were observed before and after heat stimulation (p < 0.001). Caffeine intake boosted the upregulation of serum orexin concentrations in subjects undergoing thermotherapy.

16.
Int J Mol Sci ; 23(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35162987

ABSTRACT

Medullary thyroid carcinoma (MTC) is a neuroendocrine tumor mainly caused by mutations in the RET proto-oncogene. We previously demonstrated that depletion of the mitochondrial molecular chaperone, mortalin, can effectively suppress human MTC cells in culture and in mouse xenografts, by disrupting mitochondrial bioenergetics and subsequently inducing apoptosis and RET downregulation. Similar effects were induced by MKT-077, a water-soluble rhodocyanine dye analog known to inhibit mortalin, but with notable toxicity in animals. These observations led us to evaluate recently developed MKT-077 analogs that exhibited higher selectivity to HSP70 proteins and improved bioavailability. We validated the MTC cell-suppressive effects of mortalin depletion in three-dimensional cultures of the human MTC lines, TT, and MZ-CRC-1, and then evaluated different MKT-077 analogs in two- and three-dimensional cell cultures, to show that the MKT-077 analogs, JG-98 and JG-194, effectively and consistently inhibited propagation of TT and MZ-CRC-1 cells in these cultures. Of note, these compounds also effectively suppressed the viability of TT and MZ-CRC-1 progenies resistant to vandetanib and cabozantinib. Moreover, JG-231, an analog with improved microsomal stability, consistently suppressed TT and MZ-CRC-1 xenografts in mice. These data suggest that mortalin inhibition may have therapeutic potential for MTC.


Subject(s)
Carcinoma, Neuroendocrine , Thyroid Neoplasms , Animals , Carcinoma, Neuroendocrine/pathology , Cell Line, Tumor , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Humans , Mice , Pyridines , Thiazoles/therapeutic use , Thyroid Neoplasms/metabolism
17.
Int J Mol Sci ; 22(24)2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34947982

ABSTRACT

Deoxyhypusine synthase (DHPS) catalyzes the first step of hypusination of the elongation translation factor 5A (eIF5A), and these two proteins have an exclusive enzyme-substrate relationship. Here we demonstrate that DHPS has a role independent of eIF5A hypusination in A375 and SK-MEL-28 human melanoma cells, in which the extracellular signal regulated kinase 1/2 (ERK1/2) pathway is deregulated. We found that RNA interference of DHPS induces G0/G1 cell cycle arrest in association with increased p21CIP1 expression in these cells whereas eIF5A knockdown induces cell death without increasing p21CIP1 expression. Interestingly, p21CIP1 knockdown switched DHPS knockdown-induced growth arrest to cell death in these cells, suggesting a specific relation between DHPS and p21CIP1 in determining cell fate. Surprisingly, ectopic expression of DHPS-K329R mutant that cannot hypusinate eIF5A abrogated DHPS knockdown-induced p21CIP1 expression in these cells, suggesting a non-canonical role of DHPS underlying the contrasting effects of DHPS and eIF5A knockdowns. We also show that DHPS knockdown induces p21CIP1 expression in these cells by increasing CDKN1A transcription through TP53 and SP1 in an ERK1/2-dependent manner. These data suggest that DHPS has a role independent of its ability to hypusinate eIF5A in cells, which appears to be important for regulating p21CIP1 expression and cell fate.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21/metabolism , Neoplasms/metabolism , Oxidoreductases Acting on CH-NH Group Donors/genetics , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Peptide Initiation Factors/metabolism , RNA-Binding Proteins/metabolism , Apoptosis , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Gene Knockout Techniques , HEK293 Cells , Humans , MAP Kinase Signaling System , Mutation , Neoplasms/genetics , RNA Interference , Eukaryotic Translation Initiation Factor 5A
18.
Genes Genet Syst ; 96(3): 129-139, 2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34148895

ABSTRACT

In various coastal areas of Japan, naturalized radish populations are observed. Radish is a cruciferous plant and exhibits self-incompatibility, involving a system controlled by a single locus with multiple S alleles. Although the S allele diversity of radish cultivars and wild radishes has been characterized, the S allele distribution in naturalized populations has not yet been analyzed in relation to the positions of the plants in situ. Here, we show the S allele distribution in naturalized radish populations of Yakushima, a small island in the East China Sea, with positions of the plants. Radish plants were sampled in coastal areas in Yakushima, and their S alleles were detected and characterized. Most of the S alleles had been previously identified in radish cultivars. However, four novel S alleles, which may be unique to Yakushima, were also found. Moreover, seeds in siliques from plants growing in the study areas were sampled, and S allele determination in DNA extracted from these seeds suggested that the plants had exchanged their pollen among their close neighbors. There was also a problem in that the PCR amplification of some SRK alleles was difficult because of their sequence diversity in the naturalized populations, as occurs in cultivars. Our results suggest that the exchange of S alleles between cultivars and naturalized populations occurs and that S alleles in naturalized populations are highly diverse. The methodology established in our study should be applicable to other self-incompatible species to dissect the diversity of S allele distribution in naturalized populations.


Subject(s)
Brassicaceae , Raphanus , Alleles , Brassicaceae/genetics , Japan , Pollen , Raphanus/genetics
19.
Chem Asian J ; 16(11): 1398-1402, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33905607

ABSTRACT

This work shows that hollow microporous organic polymer (H-MOP-A) with activated internal alkynes as IR probes can be prepared by template synthesis based on acyl Sonogashira-Hagihara coupling at room temperature. The H-MOP-A is a versatile platform in the main chain PSM based on nonradical thiol-yne click reaction. Moreover, an IR peak of internal alkynes in the H-MOP-A is very intense and could be utilized in the monitoring of thiol-yne click-based main chain PSM. The functionalized H-MOP-A with carboxylic acids (H-MOP-CA) showed efficient adsorption toward Ag+ ions. The resultant H-MOP-CA-Ag showed excellent performance in the CO2 fixation to α-alkylidene cyclic compounds.

20.
Cancer Lett ; 502: 25-33, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33440231

ABSTRACT

Therapy resistance to a selective B-Raf inhibitor (BRAFi) poses a challenge in treating patients with BRAF-mutant melanomas. Here, we report that RNA interference of mortalin (HSPA9/GRP75), a mitochondrial molecular chaperone often upregulated and mislocalized in melanoma, can effectively induce death of vemurafenib-resistant progenies of human B-RafV600E melanoma cell lines, A375 and Colo-829. Mortalin depletion induced death of vemurafenib-resistant cells at similar efficacy as observed in vemurafenib-naïve parental cells. This lethality was correlated with perturbed mitochondrial permeability and was attenuated by knockdown of adenine nucleotide translocase (ANT) and cyclophilin D (CypD), the key regulators of mitochondrial permeability. Chemical inhibition of MEK1/2 and ERK1/2 also suppressed mortalin depletion-induced death and mitochondrial permeability in these cells. These data suggest that mortalin and MEK/ERK regulate an ANT/CypD-associated mitochondrial death mechanism(s) in B-RafV600E melanoma cells and that this regulation is conserved even after these cells develop BRAFi resistance. We also show that doxycycline-induced mortalin depletion can effectively suppress the xenografts of vemurafenib-resistant A375 progeny in athymic nude mice. These findings suggest that mortalin has potential as a candidate therapeutic target for BRAFi-resistant BRAF-mutant tumors.


Subject(s)
Doxycycline/administration & dosage , HSP70 Heat-Shock Proteins/genetics , Melanoma/drug therapy , Mitochondrial Proteins/genetics , Proto-Oncogene Proteins B-raf/genetics , Vemurafenib/administration & dosage , Adenine Nucleotide Translocator 3/genetics , Animals , Cell Line, Tumor , Cyclophilins/genetics , Doxycycline/pharmacology , Drug Resistance, Neoplasm , Extracellular Signal-Regulated MAP Kinases/genetics , Female , Gene Knockdown Techniques , Humans , Melanoma/genetics , Mice , Mice, Nude , Mitogen-Activated Protein Kinase Kinases/genetics , Mutation , Vemurafenib/pharmacology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...