Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2313745, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38482935

ABSTRACT

Liquid crystalline elastomers (LCEs) are stimuli-responsive materials that transduce an input energy into a mechanical response. LCE composites prepared with photothermal agents, such as nanoinclusions, are a means to realize wireless, remote, and local control of deformation with light. Amongst photothermal agents, gold nanorods (AuNRs) are highly efficient converters when the irradiation wavelength matches the longitudinal surface plasmon resonance (LSPR) of the AuNRs. However, AuNR aggregation broadens the LSPR which also reduces photothermal efficiency. Here, the surface chemistry of AuNRs is engineered via a well-controlled two-step ligand exchange with a monofunctional poly(ethylene glycol) (PEG) thiol that greatly improves the dispersion of AuNRs in LCEs. Accordingly, LCE-AuNR nanocomposites with very low PEG-AuNR content (0.01 wt%) prepared by 3D printing are shown to be highly efficient photothermal actuators with rapid response (>60% strain s-1) upon irradiation with near-infrared (NIR; 808 nm) light. Because of the excellent dispersion of PEG-AuNR within the LCE, unabsorbed NIR light transmits through the nanocomposites and can actuate a series of samples. Further, the dispersion also allows for the optical deformation of millimeter-thick 3D printed structures without sacrificing actuation speed. The realization of well-dispersed nanoinclusions to maximize the stimulus-response of LCEs can benefit functional implementation in soft robotics or medical devices.

2.
Article in English | MEDLINE | ID: mdl-37917804

ABSTRACT

Colloidal gold nanorods (AuNRs) are integral to a diverse array of technologies, ranging from plasmonic imaging, therapeutics, and sensors to large-area coatings, catalysts, filters, and optical attenuators. Different lab-scale strategies are available to fabricate AuNRs with a broad range of physiochemical properties; however, this is achieved at the cost of synthetic robustness and scalability, which limit broad adoption in these technologies. To address this, Product Metrics (Structural Precision, Shape Yield, and Reagent Utilization), measurable with UV-vis-NIR spectroscopy, are defined to evaluate the efficiency of AuNR production. The dependency of these metrics on reaction formulation (reagent concentrations, pH, and T) is established and used to develop a two-step method based on optimizing symmetry breaking of seed particles, followed by the controlled extension of AuNR length and volume. Reagent concentrations and their relative molar ratios with respect to HAuCl4 are adjusted for each step to optimize these adversarial processes. Based on these correlations, we successfully demonstrate the production of highly concentrated AuNRs with targeted volume and aspect ratio while reducing particle impurities and shape dispersity to less than 4 and 10%, respectively, by employing a rationalized formulation that maximizes both product quality and Reagent Utilization. This results in a product density of 1.6 mg/mL, which is 20 times higher than that of conventional literature methods, with commensurate reduction in environmental waste products.

4.
Opt Express ; 30(14): 25061-25077, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-36237045

ABSTRACT

Experimental and theoretical studies of colloidal nanoparticles have primarily focused on accurate characterization and simulation of observable characteristics, such as resonant wavelength. In this paper, we tackle the optimal design of colloidal-nanoparticle ensembles: what is the largest possible per-volume optical cross-section, which designs might achieve them, and can such response be experimentally demonstrated? We combine theory and experiment to answer each of these questions. We derive general bounds on the maximum cross-sections per volume, and we apply an analytical antenna model to show that resonant nanorods should nearly achieve such bounds. We use a modified seed-mediated synthesis approach to synthesize ensembles of gold nanorods with small polydispersity, i.e., small variations in size and aspect ratio. Polydispersity is the key determinant of how closely such ensembles can approach their respective bounds yet is difficult to characterize experimentally without near-field measurements. We show that a certain "extinction metric," connecting extinction cross-section per volume with the radiative efficiencies of the nanoparticles, offers a quantitative prediction of polydispersity via quantities that can be rapidly measured with far-field characterization tools. Our predictions apply generally across all plasmonic materials and offer a roadmap to the largest possible optical response of nanoparticle ensembles.

5.
ACS Nanosci Au ; 2(1): 32-39, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-37101517

ABSTRACT

Throughout nature, simple rules explain complex phenomena, such as the selective interaction of chiral objects with circularly polarized light. Here, we demonstrate chiroptical signals from gold nanorods, which are seemingly achiral structures. Shape anisotropy due to atomic-level faceting and rounding at the tips of nanorods, which are free of chiral surface ligands, induces linear-to-circular polarization modulation during second harmonic generation. The intrinsic nanorod chiroptical response is increased by plasmon-resonant excitation, which preferentially amplifies circularly polarized harmonic signals. This structure-plasmon interplay is uniquely resolved by polarization-resolved second harmonic generation measurements. The material's second-order polarizability is the product of the structure-dependent lattice-normal susceptibility and local surface plasmon field vectors. Synthetically scalable plasmon-supporting nanorods that amplify small circular dichroism signals provide a simple, assembly-free platform for chiroptical transduction.

6.
ACS Appl Mater Interfaces ; 13(23): 27445-27457, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34080841

ABSTRACT

Solution-based printing of anisotropic nanostructures is foundational to many emerging technologies, such as energy storage devices, photonic elements, and sensors. Methods to rapidly (>mm/s) manufacture large area assemblies (≫cm2) with simultaneous control of thickness (<10 nm), nanoparticle spacing (<5 nm), surface roughness (<5 nm), and global and local orientational order are still lacking. Herein, we demonstrate such capability using flow-coating to fabricate robust, self-supporting mono- and bilayer films of polystyrene-grafted gold nanorods (PS-AuNRs) onto solid substrates. The relationship among solvent evaporation, deposition speed, substrate surface energy, concentration, and film thickness for solutions of such hairy hybrid nanoparticles spans the Landau-Levich and evaporative film formation regimes. In the Landau-Levich regime, solvent evaporation rapidly concentrates the PS-AuNRs, leading to the formation of thin films with distinct, randomized side-by-side domains. Alternatively, processing at slower velocities in the evaporative regime results in the global alignment of PS-AuNRs. Processing speed and substrate surface energy afford tuning of the film's optical extinction of a given PS-AuNR via fine control of inter-rod distance and subsequent plasmonic coupling between neighboring nanorods. Because the concept of the polymer-grafted nanorod can be expanded to a variety of different polymer canopies, shapes, and core materials, the processing-structure relationships established in this work will have important implications on the future development of anisotropic nanostructure-based applications.

7.
Nano Lett ; 20(10): 7722-7727, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32931697

ABSTRACT

The use of two-dimensional electronic spectroscopy (2DES) to study electron-electron scattering dynamics in plasmonic gold nanorods is described. The 2DES resolved the time-dependent plasmon homogeneous line width Γh(t), which was sensitive to changes in Fermi-level carrier densities. This approach was effective because electronic excitation accelerated plasmon dephasing, which broadened Γh. Analysis of Γh(t) indicated plasmon coherence times were decreased by 20-50%, depending on excitation conditions. Electron-electron scattering rates of approximately 0.01 fs-1 were obtained by fitting the time-dependent Γh broadening; rates increased quadratically with both excitation pulse energy and frequency. This rate dependence agreed with Fermi-liquid theory-based predictions. Hot electron thermalization through electron-phonon scattering resulted in Γh narrowing. To our knowledge, this is the first use of the plasmon Γh(t) to isolate electron-electron scattering dynamics in colloidal metal nanoparticles. These results illustrate the effectiveness of 2DES for studying hot electron dynamics of solution-phase plasmonic ensembles.

8.
J Chem Phys ; 153(6): 061101, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-35287436

ABSTRACT

The photoluminescence (PL) mechanisms of gold nanorods following nonlinear excitation are described. Using single-particle nonlinear optical measurements, we compare PL signals resulting from both the plasmon-resonant and non-resonant excitations. In both cases, spectrally broad interband PL emission was observed. However, we also show that resonant excitation of the longitudinal plasmon mode leads to an increased photonic density of states at energies corresponding to the transverse plasmon resonance. This increased density of states is achieved by a multi-step mechanism, which is initiated by three-photon excitation and followed by an Auger relaxation process. Importantly, the results show that nonlinear excitation can lead to energy and polarization modulation of nanoparticle optical signals that are not observed using linear excitation. This work also demonstrates the effectiveness of single-nanoparticle PL studies for understanding how plasmon-resonant excitations can be used to modify hot carrier distributions.

9.
ACS Nano ; 13(4): 3875-3883, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-30794377

ABSTRACT

Information display utilizing plasmonic color generation has recently emerged as an alternative paradigm to traditional printing and display technologies. However, many implementations so far have either presented static pixels with a single display state or rely on relatively slow switching mechanisms such as chemical transformations or liquid crystal transitions. Here, we demonstrate spatial, spectral, and temporal control of light using dynamic plasmonic pixels that function through the electric-field-induced alignment of plasmonic nanorods in organic suspensions. By tailoring the geometry and composition (Au and Au@Ag) of the nanorods, we illustrate light modulation across a significant portion of the visible and infrared spectrum (600-2400 nm). The fast (∼30 µs), reversible nanorod alignment is manifested as distinct color changes, characterized by shifts of observed chromaticity and luminance. Integration into larger device architectures is showcased by the fabrication of a seven-segment numerical indicator. The control of light on demand achieved in these dynamic plasmonic pixels establishes a favorable platform for engineering high-performance optical devices.

10.
ACS Appl Mater Interfaces ; 9(31): 26363-26371, 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28714667

ABSTRACT

The extremely large optical extinction coefficient of gold nanorods (Au-NRs) enables their use in a diverse array of technologies, rnging from plasmonic imaging, therapeutics and sensors, to large area coatings, filters, and optical attenuators. Development of the latter technologies has been hindered by the lack of cost-effective, large volume production. This is due in part to the low reactant concentration required for symmetry breaking in conventional seed-mediated synthesis. Direct scale up of laboratory procedures has limited viability because of excessive solvent volume, exhaustive postsynthesis purification processes, and the generation of large amounts of waste (e.g., hexadecyltrimethylammonium bromide(CTAB)). Following recent insights into the growth mechanism of Au-NRs and the role of seed development, we modify the classic seed-mediated synthesis via temporal control of seed and reactant concentration to demonstrate production of Au-NRs at more than 100-times the conventional concentration, while maintaining independent control and narrow distribution of nanoparticle dimensions, aspect ratio, and volume. Thus, gram scale synthesis of Au-NRs with prescribed aspect ratio and volume is feasible in a 100 mL reactor with 1/100th of organic waste relative to conventional approaches. Such scale-up techniques are crucial to cost-effectively meet the increased demand for large quantities of Au-NRs in emerging applications.

11.
Nano Lett ; 13(12): 6287-91, 2013.
Article in English | MEDLINE | ID: mdl-24256476

ABSTRACT

The phenomenon of plasmon-induced transparency holds immense potential for high sensitivity sensors and optical information processing due to the extreme dispersion and slowing of light within a narrow spectral window. Unfortunately plasmonic metamaterials demonstrating this effect has been restricted to infrared and greater wavelengths due to requisite precision in structure fabrication. Here we report a novel metamaterial synthesized by bottom-up self-assembly of gold nanorods. The small dimensions (≤ 50/20 nm, length/diameter), atomically smooth surfaces, and nanometer resolution enable the first demonstration of plasmon-induced transparency at visible wavelengths. The slow-down factors within the reduced symmetry heterodimer cluster are comparable to longer wavelength counterparts. The inherent spectral tunability and facile large-scale integration afforded by self-assembled metamaterials will open a new paradigm for physically realizable on-chip photonic device designs.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Nanotubes/chemistry , Photons , Surface Plasmon Resonance , Surface Properties
12.
ACS Nano ; 7(10): 9064-74, 2013 Oct 22.
Article in English | MEDLINE | ID: mdl-24004164

ABSTRACT

Tailoring the efficiency of fluorescent emission via plasmon-exciton coupling requires structure control on a nanometer length scale using a high-yield fabrication route not achievable with current lithographic techniques. These systems can be fabricated using a bottom-up approach if problems of colloidal stability and low yield can be addressed. We report progress on this pathway with the assembly of quantum dots (emitter) on gold nanorods (plasmonic units) with precisely controlled spacing, quantum dot/nanorod ratio, and long-term colloidal stability, which enables the purification and encapsulation of the assembled architecture in a protective silica shell. Overall, such controllability with nanometer precision allows one to synthesize stable, complex architectures at large volume in a rational and controllable manner. The assembled architectures demonstrate photoluminescent enhancement (5×) useful for applications ranging from biological sensing to advanced optical communication.

13.
ACS Nano ; 6(6): 5693-701, 2012 Jun 26.
Article in English | MEDLINE | ID: mdl-22647144

ABSTRACT

The synergy of self- and directed-assembly processes and lithography provides intriguing avenues to fabricate translationally ordered nanoparticle arrangements, but currently lacks the robustness necessary to deliver complex spatial organization. Here, we demonstrate that interparticle spacing and local orientation of gold nanorods (AuNR) can be tuned by controlling the Debye length of AuNR in solution and the dimensions of a chemical contrast pattern. Electrostatic and hydrophobic selectivity for AuNR to absorb to patterned regions of poly(2-vinylpyridine) (P2VP) and polystyrene brushes and mats was demonstrated for AuNR functionalized with mercaptopropane sulfonate (MS) and poly(ethylene glycol), respectively. For P2VP patterns of stripes with widths comparable to the length of the AuNR, single- and double-column arrangements of AuNR oriented parallel and perpendicular to the P2VP line were obtained for MS-AuNR. Furthermore, the spacing of the assembled AuNR was uniform along the stripe and related to the ionic strength of the AuNR dispersion. The different AuNR arrangements are consistent with predictions based on maximization of packing of AuNR within the confined strip.


Subject(s)
Gold/chemistry , Molecular Imprinting/methods , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Crystallization/methods , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
14.
Small ; 8(7): 1013-20, 2012 Apr 10.
Article in English | MEDLINE | ID: mdl-22307829

ABSTRACT

Colloidal synthetic approaches to discrete, soluble plasmonic architectures, such as nanorod pairs, offer numerous advantages relative to lithographic techniques, including compositionally asymmetric structures, atomically smooth surfaces, and continuous fabrication. Density-driven colloidal assembly, such as by solvent evaporation, produces some intriguing structures, e.g., particle chains; however, controllability and post-processibility of the final architecture is inadequate. Also the limited quantity of product nominally comprises a broad distribution of assembly size and type. Herein, the high-yield formation of soluble, stable, and compositionally discrete gold nanorod (Au NR) architectures by inducing-then arresting-flocculation is demonstrated using bifunctional nanorods and reversible modulation of solvent quality to deplete and reassemble an electrostatic stabilization layer, thereby eliminating the need for an additional encapsulant. Analogous to dimer formation during step-growth polymerization, the initial yield of Au nanorod side-by-side pairs can be greater than 50%. The high solubility and stability of the assembly enable purification, scale-up of nanomolarity solutions, and subsequent chemical modification of the assembled product. As an example, in situ silica deposition via Stöber synthesis onto the assembled pair produces highly processable nanostructures with a single pair of embedded Au NRs at their center, which exhibit thermal stability at temperatures in excess of 700 °C.


Subject(s)
Gold/chemistry , Nanotechnology/methods , Nanotubes/chemistry , Microscopy, Electron, Scanning , Nanotubes/ultrastructure , Temperature
15.
Langmuir ; 28(6): 3248-58, 2012 Feb 14.
Article in English | MEDLINE | ID: mdl-22242624

ABSTRACT

Gold nanomaterials (AuNMs) have distinctive electronic and optical properties, making them ideal candidates for biological, medical, and defense applications. Therefore, it is imperative to evaluate the potential biological impact of AuNMs before employing them in any application. This study investigates two AuNMs with different aspect ratios (AR) on mediation of biological responses in the human keratinocyte cell line (HaCaT) to model potential skin exposure to these AuNMs. The cellular responses were evaluated by cell viability, reactive oxygen species (ROS) generation, alteration in gene and protein expression, and inflammatory response. Gold nanospheres, nominally 20 nm in diameter and coated with mercaptopropane sulfonate (AuNS-MPS), formed agglomerates when dispersed in cell culture media, had a large fractal dimension (D(f) = 2.57 ± 0.4) (i.e., tightly bound and densely packed) and were found to be nontoxic even at the highest dose of 100 µg/mL. Highly uniform, 16.7 nm diameter, and 43.8 nm long polyethylene glycol-capped gold nanorods (AuNR-PEG) also formed agglomerates when dispersed into the cell culture media. However, the agglomerates had a smaller fractal dimension (D(f) = 1.28 ± 0.08) (i.e., loosely bound) and were found to be cytotoxic to the HaCaT cells, with a significant decrease in cell viability occurring at 25 µg/mL and higher. Moreover, AuNR-PEG caused significant ROS production and up-regulated several genes involved in cellular stress and toxicity. These results, combined with increased levels of inflammatory and apoptotic proteins, demonstrated that the AuNR-PEG induced apoptosis. Exposure to AuNS-MPS, however, did not show any of the detrimental effects observed from the AuNR-PEG. Therefore, we conclude that shape appears to play a key role in mediating the cellular response to AuNMs.


Subject(s)
Keratinocytes/drug effects , Keratinocytes/metabolism , Metal Nanoparticles/adverse effects , Metal Nanoparticles/chemistry , Nanostructures/adverse effects , Nanostructures/chemistry , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , Gold , Humans , Keratinocytes/cytology , Reactive Oxygen Species/metabolism
16.
J Phys Chem Lett ; 3(18): 2568-74, 2012 Sep 20.
Article in English | MEDLINE | ID: mdl-26295876

ABSTRACT

Colorimetric analysis of broadband illumination scattered from isolated gold nanorods and reduced symmetry Dolmen structures provide a visible measure of the local nanoscale orientation of the nanostructures relative to the laboratory frame of reference. Polarized dark-field scattering microscopy correlated with scanning electron microscopy of low and high aspect ratio gold nanorods demonstrated accuracies of 2.3 degrees, which is a 5-fold improvement over photothermal and defocused imaging methods. By assigning the three color channels of the imaging detector (red, green, and blue) to the plasmon resonance wavelengths of the nanostructure, the quantitative display of orientation improved by 200%. The reduced symmetry of a gold nanorod Dolmen structure further improved the sensitivity of colorimetric orientation by a factor of 2 due to the comparative intensities of the resonances. Thus the simplicity, high accuracy, and sensitivity of visual colorimetric sensing of local nanoscale orientation holds promise for high throughput, inexpensive structure and dynamics studies in biology and material science.

17.
Nano Lett ; 10(4): 1433-9, 2010 Apr 14.
Article in English | MEDLINE | ID: mdl-20349972

ABSTRACT

For nanoparticle-based technologies, efficient and rapid approaches that yield particles of high purity with a specific shape and size are critical to optimize the nanostructure-dependent optical, electrical, and magnetic properties, and not bias conclusions due to the existence of impurities. Notwithstanding the continual improvement of chemical methods for shaped nanoparticle synthesis, byproducts are inevitable. Separation of these impurities may be achieved, albeit inefficiently, through repeated centrifugation steps only when the sedimentation coefficient of the species shows sufficient contrast. We demonstrate a robust and efficient procedure of shape and size selection of Au nanoparticles (NPs) through the formation of reversible flocculates by surfactant micelle induced depletion interaction. Au NP flocculates form at a critical surfactant micelle molar concentration, C(m)* where the number of surfactant micelles is sufficient to induce an attractive potential energy between the Au NPs. Since the magnitude of this potential depends on the interparticle contact area of Au NPs, separation is achieved even for the NPs of the same mass with different shape by tuning the surfactant concentration and extracting flocculates from the sediment by centrifugation or gravitational sedimentation. The refined NPs are redispersed by subsequently decreasing the surfactant concentration to reduce the effective attractive potential. These concepts provide a robust method to improve the quality of large scale synthetic approaches of a diverse array of NPs, as well as fine-tune interparticle interactions for directed assembly, both crucial challenges to the continual realization of the broad technological potential of monodispersed NPs.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Micelles , Nanotechnology/methods , Particle Size , Surface Properties , Surface-Active Agents/chemistry
18.
Proc Natl Acad Sci U S A ; 106(13): 4981-5, 2009 Mar 31.
Article in English | MEDLINE | ID: mdl-19255445

ABSTRACT

We demonstrate the use of centrifugation for efficient separation of colloidal gold nanorods from a mixture of nanorods and nanospheres. We elucidate the hydrodynamic behavior of nanoparticles of various shapes and illustrate that the shape-dependent drag causes particles to have shape-dependent sedimentation behavior. During centrifugation, nanoparticles undergo Brownian motion under an external field and move with different sedimentation velocities dictated by their Svedberg coefficients. This effects a separation of particles of different shape and size. Our theoretical analysis and experiments demonstrate the viability of using centrifugation to shape-separate a mixture of colloidal particles.


Subject(s)
Centrifugation/methods , Gold , Metal Nanoparticles , Colloids/chemistry , Motion , Nanoparticles
19.
ACS Nano ; 2(9): 1833-40, 2008 Sep 23.
Article in English | MEDLINE | ID: mdl-19206422

ABSTRACT

Surface modification of carbon nanotubes (CNTs) has been widely studied for some years. However, the asymmetric modification of individual CNTs with different molecular species/nanoparticles at the two end-tips or along the nanotube length is only a recent development. As far as we are aware, no attempt has so far been made to asymmetrically functionalize individual CNTs with moieties of opposite charges. In this paper, we have demonstrated a simple, but effective, asymmetric modification of the sidewall of CNTs with oppositely charged moieties by plasma treatment and pi-pi stacking interaction. The as-prepared asymmetrically sidewall-functionalized CNTs can be used as a platform for bottom-up self-assembly of complex structures or can be charge-selectively self-assembled onto and/or between electrodes with specific biases under an appropriate applied voltage for potential device applications.


Subject(s)
Crystallization/methods , Electrochemistry/methods , Nanotechnology/methods , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Anisotropy , Hot Temperature , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...