Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Nature ; 534(7607): 341-6, 2016 06 16.
Article in English | MEDLINE | ID: mdl-27281222

ABSTRACT

Chronic myeloid leukaemia (CML) arises after transformation of a haemopoietic stem cell (HSC) by the protein-tyrosine kinase BCR-ABL. Direct inhibition of BCR-ABL kinase has revolutionized disease management, but fails to eradicate leukaemic stem cells (LSCs), which maintain CML. LSCs are independent of BCR-ABL for survival, providing a rationale for identifying and targeting kinase-independent pathways. Here we show--using proteomics, transcriptomics and network analyses--that in human LSCs, aberrantly expressed proteins, in both imatinib-responder and non-responder patients, are modulated in concert with p53 (also known as TP53) and c-MYC regulation. Perturbation of both p53 and c-MYC, and not BCR-ABL itself, leads to synergistic cell kill, differentiation, and near elimination of transplantable human LSCs in mice, while sparing normal HSCs. This unbiased systems approach targeting connected nodes exemplifies a novel precision medicine strategy providing evidence that LSCs can be eradicated.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Tumor Suppressor Protein p53/antagonists & inhibitors , Acetamides/pharmacology , Acetamides/therapeutic use , Animals , Antigens, CD34/metabolism , Azepines/pharmacology , Azepines/therapeutic use , Cell Death/drug effects , Cell Differentiation/drug effects , DNA-Binding Proteins/metabolism , Female , Fusion Proteins, bcr-abl/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Humans , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Imidazolines/pharmacology , Imidazolines/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Male , Mice , Neoplasm Proteins/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/transplantation , Proteomics , Proto-Oncogene Proteins c-myc/deficiency , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Reproducibility of Results , Signal Transduction/drug effects , Transcriptome , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL