Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Eur J Pharmacol ; 972: 176589, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38631503

ABSTRACT

We explored the vasorelaxant effects of ipragliflozin, a sodium-glucose cotransporter-2 inhibitor, on rabbit femoral arterial rings. Ipragliflozin relaxed phenylephrine-induced pre-contracted rings in a dose-dependent manner. Pre-treatment with the ATP-sensitive K+ channel inhibitor glibenclamide (10 µM), the inwardly rectifying K+ channel inhibitor Ba2+ (50 µM), or the Ca2+-sensitive K+ channel inhibitor paxilline (10 µM) did not influence the vasorelaxant effect. However, the voltage-dependent K+ (Kv) channel inhibitor 4-aminopyridine (3 mM) reduced the vasorelaxant effect. Specifically, the vasorelaxant response to ipragliflozin was significantly attenuated by pretreatment with the Kv7.X channel inhibitors linopirdine (10 µM) and XE991 (10 µM), the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitors thapsigargin (1 µM) and cyclopiazonic acid (10 µM), and the cAMP/protein kinase A (PKA)-associated signaling pathway inhibitors SQ22536 (50 µM) and KT5720 (1 µM). Neither the cGMP/protein kinase G (PKG)-associated signaling pathway nor the endothelium was involved in ipragliflozin-induced vasorelaxation. We conclude that ipragliflozin induced vasorelaxation of rabbit femoral arteries by activating Kv channels (principally the Kv7.X channel), the SERCA pump, and the cAMP/PKA-associated signaling pathway independent of other K+ (ATP-sensitive K+, inwardly rectifying K+, and Ca2+-sensitive K+) channels, cGMP/PKG-associated signaling, and the endothelium.


Subject(s)
Cyclic AMP-Dependent Protein Kinases , Femoral Artery , Glucosides , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Signal Transduction , Thiophenes , Vasodilation , Animals , Rabbits , Femoral Artery/drug effects , Femoral Artery/physiology , Vasodilation/drug effects , Signal Transduction/drug effects , Cyclic AMP-Dependent Protein Kinases/metabolism , Thiophenes/pharmacology , Male , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors , Vasodilator Agents/pharmacology , Potassium Channels, Voltage-Gated/metabolism , Potassium Channels, Voltage-Gated/antagonists & inhibitors
2.
Eur J Pharmacol ; 973: 176610, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38663541

ABSTRACT

Aripiprazole, a third-generation antipsychotic, has been widely used to treat schizophrenia. In this study, we evaluated the effect of aripiprazole on voltage-gated potassium (Kv) channels in rabbit coronary arterial smooth muscle cells using the patch clamp technique. Aripiprazole reduced the Kv current in a concentration-dependent manner with a half-maximal inhibitory concentration of 0.89 ± 0.20 µM and a Hill coefficient of 1.30 ± 0.25. The inhibitory effect of aripiprazole on Kv channels was voltage-dependent, and an additional aripiprazole-induced decrease in the Kv current was observed in the voltage range of full channel activation. The decay rate of Kv channel inactivation was accelerated by aripiprazole. Aripiprazole shifted the steady-state activation curve to the right and the inactivation curve to the left. Application of a repetitive train of pulses (1 and 2 Hz) promoted inhibition of the Kv current by aripiprazole. Furthermore, the recovery time constant from inactivation increased in the presence of aripiprazole. Pretreatment of Kv1.5 subtype inhibitor reduced the inhibitory effect of aripiprazole. However, pretreatment with Kv 7 and Kv2.1 subtype inhibitors did not change the degree of aripiprazole-induced inhibition of the Kv current. We conclude that aripiprazole inhibits Kv channels in a concentration-, voltage-, time-, and use (state)-dependent manner by affecting the gating properties of the channels.


Subject(s)
Aripiprazole , Coronary Vessels , Myocytes, Smooth Muscle , Potassium Channel Blockers , Potassium Channels, Voltage-Gated , Animals , Aripiprazole/pharmacology , Rabbits , Potassium Channels, Voltage-Gated/metabolism , Potassium Channels, Voltage-Gated/antagonists & inhibitors , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Coronary Vessels/drug effects , Coronary Vessels/cytology , Potassium Channel Blockers/pharmacology , Male , Antipsychotic Agents/pharmacology , Dose-Response Relationship, Drug
3.
J Appl Toxicol ; 44(3): 391-399, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37786982

ABSTRACT

The regulation of membrane potential and the contractility of vascular smooth muscle cells (VSMCs) by voltage-dependent K+ (Kv) potassium channels are well-established. In this study, native VSMCs from rabbit coronary arteries were used to investigate the inhibitory effect of sertindole, an atypical antipsychotic agent, on Kv channels. Sertindole induced dose-dependent inhibition of Kv channels, with an IC50 of 3.13 ± 0.72 µM. Although sertindole did not cause a change in the steady-state activation curve, it did lead to a negative shift in the steady-state inactivation curve. The application of 1- or 2-Hz train pulses failed to alter the sertindole-induced inhibition of Kv channels, suggesting use-independent effects of the drug. The inhibitory response to sertindole was significantly diminished by pretreatment with a Kv1.5 inhibitor but not by Kv2.1 and Kv7 subtype inhibitors. These findings demonstrate the sertindole dose-dependent and use-independent inhibition of vascular Kv channels (mainly the Kv1.5 subtype) through a mechanism that involves altering steady-state inactivation curves. Therefore, the use of sertindole as an antipsychotic drug may have adverse effects on the cardiovascular system.


Subject(s)
Antipsychotic Agents , Imidazoles , Indoles , Potassium Channels, Voltage-Gated , Animals , Rabbits , Coronary Vessels , Antipsychotic Agents/toxicity , Potassium Channels, Voltage-Gated/pharmacology , Potassium Channel Blockers/toxicity , Myocytes, Smooth Muscle
4.
Eur J Pharmacol ; 957: 176005, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37611842

ABSTRACT

Lurasidone is a second-generation antipsychotic drug used to treat schizophrenia, mania, and bipolar disorder. The drug is an antagonist of the 5-HT2A and D2 receptors. No effect of lurasidone on the voltage-gated K+ (Kv) channels has yet been identified. Here, we show that lurasidone inhibits the vascular Kv channels of rabbit coronary arterial smooth muscle cells in a dose-dependent manner with an IC50 of 1.88 ± 0.21 µM and a Hill coefficient of 0.98 ± 0.09. Although lurasidone (3 µM) did not affect the activation kinetics, the drug negatively shifted the inactivation curve, suggesting that the drug interacted with the voltage sensors of Kv channels. Application of 1 or 2 Hz train steps in the presence of lurasidone significantly increased Kv current inhibition. The recovery time after channel inactivation increased in the presence of lurasidone. These results suggest that the inhibitory action of lurasidone is use (state)-dependent. Pretreatment with a Kv 1.5 subtype inhibitor effectively reduced the inhibitory effect of lurasidone. However, the inhibitory effect on Kv channels did not markedly change after pretreatment with a Kv 2.1 or a Kv7 subtype inhibitor. In summary, lurasidone inhibits vascular Kv channels (primarily the Kv1.5 subtype) in a concentration- and use (state)-dependent manner by shifting the steady-state inactivation curve.


Subject(s)
Antipsychotic Agents , Potassium Channels, Voltage-Gated , Animals , Rabbits , Lurasidone Hydrochloride/pharmacology , Antipsychotic Agents/pharmacology , Coronary Vessels , Myocytes, Smooth Muscle
5.
J Appl Toxicol ; 43(12): 1926-1933, 2023 12.
Article in English | MEDLINE | ID: mdl-37551856

ABSTRACT

Paliperidone, an atypical antipsychotic, is widely used to treat schizophrenia. In this study, we explored whether paliperidone inhibited the voltage-dependent K+ (Kv) channels of rabbit coronary arterial smooth muscle cells. Paliperidone reduced Kv channel activity in a concentration-dependent manner with a half-maximal inhibitory concentration (IC50 ) of 16.58 ± 3.03 µM and a Hill coefficient of 0.60 ± 0.04. It did not significantly shift the steady-state activation or inactivation curves, suggesting that the drug did not affect the gating properties of Kv channels. In the presence of paliperidone, the application of 20 repetitive depolarizing pulses at 1 and 2 Hz gradually increased the inhibition of the Kv current. Further, the recovery time constant after Kv channel inactivation was increased by paliperidone, indicating that it inhibited the Kv channel in a use (state)-dependent manner. Its inhibitory effects were reduced by pretreatment with a Kv1.5 subtype inhibitor. However, pretreatment with a Kv2.1 or Kv7 inhibitor did not reduce its inhibitory effect. We conclude that paliperidone inhibits Kv channels (mainly Kv1.5 subtype channels) in a concentration- and use (state)-dependent manner without changing channel gating.


Subject(s)
Antipsychotic Agents , Potassium Channels, Voltage-Gated , Animals , Rabbits , Antipsychotic Agents/toxicity , Paliperidone Palmitate/pharmacology , Potassium Channel Blockers/pharmacology , Potassium Channels, Voltage-Gated/pharmacology , Myocytes, Smooth Muscle
6.
Food Sci Biotechnol ; 32(4): 517-529, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36911335

ABSTRACT

Exopolysaccharide (EPS)-producing Bifidobacterium bifidum EPS DA-LAIM was isolated from healthy human feces, the structure of purified EPS from the strain was analyzed, and its prebiotic activity was evaluated. The EPS from B. bifidum EPS DA-LAIM is a glucomannan-type heteropolysaccharide with a molecular weight of 407-1007 kDa, and its structure comprises 2-mannosyl, 6-mannosyl, and 2,6-mannosyl residues. The purified EPS promoted the growth of representative lactic acid bacteria and bifidobacterial strains. Bifidobacterium bifidum EPS DA-LAIM increased nitric oxide production in RAW 264.7 macrophage cells, indicating its immunostimulatory activity. Bifidobacterium bifidum EPS DA-LAIM also exhibited high gastrointestinal tract tolerance, gut adhesion ability, and antioxidant activity. These results suggest that EPS from B. bifidum EPS DA-LAIM is a potentially useful prebiotic material, and B. bifidum EPS DA-LAIM could be applied as a probiotic candidate. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-022-01213-w.

7.
Fundam Clin Pharmacol ; 37(1): 75-84, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36093990

ABSTRACT

We investigated the vasodilatory effect of omarigliptin, an oral antidiabetic drug in the dipeptidyl peptidase-4 inhibitor class, and its related mechanisms using phenylephrine (Phe)-induced pre-contracted aortic rings. Omarigliptin dilated aortic rings pre-constricted with Phe in a dose-dependent manner. Pretreatment with the voltage-dependent K+ channel inhibitor 4-aminopyridine significantly attenuated the vasodilatory effect of omarigliptin, whereas pretreatment with the inwardly rectifying K+ channel inhibitor Ba2+ , ATP-sensitive K+ channel inhibitor glibenclamide, and large-conductance Ca2+ -activated K+ channel inhibitor paxilline did not alter its vasodilation. Pretreatment with the sarco/endoplasmic reticulum Ca2+ -ATPase (SERCA) pump inhibitors thapsigargin and cyclopiazonic acid significantly reduced the vasodilatory effect of omarigliptin. Neither cAMP/PKA-related signaling pathway inhibitors nor cGMP/PKG-related signaling pathway inhibitors modulated the vasodilatory effect of omarigliptin. Removal of endothelium did not diminish the vasodilatory effect of omarigliptin. Furthermore, pretreatment with the nitric oxide synthase inhibitor L-NAME or small-conductance Ca2+ -activated K+ channel inhibitor apamin, together with the intermediate-conductance Ca2+ -activated K+ channel inhibitor TRAM-34, did not influence the vasodilatory effect of omarigliptin. In conclusion, omarigliptin induced vasodilation in rabbit aortic smooth muscle by activating voltage-dependent K+ channels and the SERCA pump independently of other K+ channels, cAMP/PKA- and cGMP/PKG-related signaling pathways, and the endothelium.


Subject(s)
Adenosine Triphosphatases , Hypoglycemic Agents , Animals , Rabbits , Hypoglycemic Agents/pharmacology , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/pharmacology , Muscle, Smooth, Vascular/metabolism , Aorta , Vasodilation , Endothelium, Vascular , Vasodilator Agents/pharmacology , Aorta, Thoracic
8.
Mitochondrial DNA B Resour ; 8(12): 1450-1453, 2023.
Article in English | MEDLINE | ID: mdl-38173922

ABSTRACT

Porella gracillima Mitt. (Jungermanniidae, Porellaceae), a bryophyte is widespread in temperate Asia and North America. In Korea, P. gracillima is mainly observed in shaded and dried rocks or tree trunks on mountains. Here, we determined the complete chloroplast (cp) genome sequence of P. gracillima to provide useful genetic information in the phylogenetic relationship, phylogeographic history, and conservation of the species. The complete cp genome of P. gracillima was assembled using NGS Illumina HiSeqX platform. The cp genome was 121,867 bp in length (GC contents, 33.7%) and showed a typical quadripartite structure, consisting of a large single copy (LSC) of 83,406 bp, a small single copy (SSC) of 19,692 bp, and two inverted repeats (IRs) of 9,385 bp. Phylogenetic analysis shows that Porellaceae was a sister group of Radulaceae, which agrees with the findings of the previous phylogenetic studies. Our cp genome data of P. gracillima may contribute to a better understanding of the evolution of the Porella in Porellaceae and will help to infer its molecular identification, thereby providing a guideline for conservation.

9.
Microorganisms ; 10(12)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36557684

ABSTRACT

Exopolysaccharide (EPS)-producing Lacticaseibacillus paracasei EPS DA-BACS was isolated from healthy human feces and its probiotic properties, as well as the structure and prebiotic activity of the EPS from this strain were examined. EPS from L. paracasei EPS DA-BACS had a ropy phenotype, which is known to have potential health benefits and is identified as loosely cell-bounded glucomannan-type EPS with a molecular size of 3.7 × 106 Da. EPS promoted the acid tolerance of L. paracasei EPS DA-BACS and provided cells with tolerance to gastrointestinal stress. The purified EPS showed growth inhibitory activity against Clostridium difficile. L. paracasei EPS DA-BACS cells completely inhibited the growth of Bacillus subtilis, Pseudomonas aeruginosa, and Aspergillus brasiliensis, as well as showed high growth inhibitory activity against Staphylococcus aureus and Escherichia coli. Treatment of lipopolysaccharide-stimulated RAW 264.7 cells with heat-killed L. paracasei EPS DA-BACS cells led to a decrease in the production of nitric oxide, indicating the anti-inflammatory activity of L. paracasei EPS DA-BACS. Purified EPS promoted the growth of Lactobacillus gasseri, Bifidobacterium bifidum, B. animalis, and B. faecale which showed high prebiotic activity. L. paracasei EPS DA-BACS harbors no antibiotic resistance genes or virulence factors. Therefore, L. paracasei EPS DA-BACS exhibits anti-inflammatory and antimicrobial activities with high gut adhesion ability and gastrointestinal tolerance and can be used as a potential probiotic.

10.
ACS Nano ; 16(12): 20533-20544, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36475304

ABSTRACT

As the turnaround time of diagnosis becomes important, there is an increasing demand for rapid, point-of-care testing (POCT) based on polymerase chain reaction (PCR), the most reliable diagnostic tool. Although optical components in real-time PCR (qPCR) have quickly become compact and economical, conventional PCR instruments still require bulky thermal systems, making it difficult to meet emerging needs. Photonic PCR, which utilizes photothermal nanomaterials as heating elements, is a promising platform for POCT as it reduces power consumption and process time. Here, we develop a photonic qPCR platform using hydrogel microparticles. Microparticles consisting of hydrogel matrixes containing photothermal nanomaterials and primers are dubbed photothermal primer-immobilized networks (pPINs). Reduced graphene oxide is selected as the most suitable photothermal nanomaterial to generate heat in pPIN due to its superior light-to-heat conversion efficiency. The photothermal reaction volume of 100 nL (predefined by the pPIN dimensions) provides fast heating and cooling rates of 22.0 ± 3.0 and 23.5 ± 2.6 °C s-1, respectively, enabling ultrafast qPCR within 5 min only with optical components. The microparticle-based photonic qPCR facilitates multiplex assays by loading multiple encoded pPIN microparticles in a single reaction. As a proof of concept, four-plex pPIN qPCR for bacterial discrimination are successfully demonstrated.


Subject(s)
Cell-Derived Microparticles , Nanostructures , Real-Time Polymerase Chain Reaction/methods , Hot Temperature , Hydrogels
11.
Materials (Basel) ; 15(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36295132

ABSTRACT

Chlorin E6 (Ce6)-incorporated nanophotosensitizers were fabricated for application in photodynamic therapy (PDT) of oral cancer cells. For this purpose, chitosan oligosaccharide (COS) was conjugated with hydrophobic and reactive oxygen species (ROS)-sensitive moieties, such as phenyl boronic acid pinacol ester (PBAP) via a thioketal linker (COSthPBAP). ThdCOOH was conjugated with PBAP to produce ThdCOOH-PBAP conjugates and then attached to amine groups of COS to produce a COSthPBAP copolymer. Ce6-incorporated nanophotosensitizers using the COSthPBAP copolymer were fabricated through the nanoprecipitation and dialysis methods. The Ce6-incorporated COSthPBAP nanophotosensitizers had a small diameter of less than 200 nm with a mono-modal distribution pattern. However, it became a multimodal and/or irregular distribution pattern when H2O2 was added. In a morphological observation using TEM, the nanophotosensitizers were disintegrated by the addition of H2O2, indicating that the COSthPBAP nanophotosensitizers had ROS sensitivity. In addition, the Ce6 release rate from the COSthPBAP nanophotosensitizers accelerated in the presence of H2O2. The SO generation was also higher in the nanophotosensitizers than in the free Ce6. Furthermore, the COSthPBAP nanophotosensitizers showed a higher intracellular Ce6 uptake ratio and ROS generation in all types of oral cancer cells. They efficiently inhibited the viability of oral cancer cells under light irradiation, but they did not significantly affect the viability of either normal cells or cancer cells in the absence of light irradiation. The COSthPBAP nanophotosensitizers showed a tumor-specific delivery capacity and fluorescence imaging of KB tumors in an in vivo animal tumor imaging study. We suggest that COSthPBAP nanophotosensitizers are promising candidates for the imaging and treatment of oral cancers.

12.
Eur J Pharmacol ; 935: 175305, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36183856

ABSTRACT

Diabetes mellitus (DM) is a metabolic disease closely related to cardiovascular disease. The dipeptidyl peptidase-4 inhibitor teneligliptin is used to treat DM and has recently been shown to have a cardiovascular protective effect against diseases such as hypertension and heart failure. The present study demonstrates the vasodilatory effect of teneligliptin using aortic rings pre-contracted with phenylephrine. Teneligliptin induced a vasodilatory effect in a dose-dependent manner, with and without endothelium. In addition, pretreatment with the nitric oxide synthase inhibitor L-NAME and small-conductance Ca2+-activated K+ channel inhibitor apamin did not alter the teneligliptin-induced vasodilatory effect. Although the adenylyl cyclase inhibitor SQ 22536 and protein kinase A (PKA) inhibitor KT 5720 did not modulate the vasodilatory effect of teneligliptin, the guanylyl cyclase inhibitor ODQ and protein kinase G (PKG) inhibitor KT 5823 effectively reduced the effect of teneligliptin. Similarly, pretreatment with the voltage-dependent K+ (Kv) channel inhibitor 4-aminopyridine (4-AP) also reduced teneligliptin-induced vasodilation. However, pretreatment with the inward rectifier K+ (Kir) channel inhibitor Ba2+, large-conductance Ca2+-activated K+ (BKCa) channel inhibitor paxilline, and ATP-sensitive K+ (KATP) channel inhibitor glibenclamide did not alter the vasodilatory effect of teneligliptin. Our data suggest that Kv7.X, but not Kv1.5 or Kv2.1, is one of the major Kv subtypes involved in teneligliptin-induced vasodilation. Furthermore, pretreatment with the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitor thapsigargin and CPA inhibited the vasodilation induced by teneligliptin. Our results suggest that teneligliptin-induced vasodilation occurs via activation of PKG, SERCA pumps and Kv channels, but not the PKA signaling pathway, other K+ channels, or endothelium.


Subject(s)
Cyclic GMP-Dependent Protein Kinases , Vasodilation , Cyclic GMP-Dependent Protein Kinases/metabolism , Hypoglycemic Agents/pharmacology , Vasodilator Agents/pharmacology , Muscle, Smooth, Vascular , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Adenosine Triphosphate/metabolism , Endothelium, Vascular
13.
Korean J Physiol Pharmacol ; 26(5): 397-404, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36039740

ABSTRACT

Fesoterodine, an antimuscarinic drug, is widely used to treat overactive bladder syndrome. However, there is little information about its effects on vascular K+ channels. In this study, voltage-dependent K+ (Kv) channel inhibition by fesoterodine was investigated using the patch-clamp technique in rabbit coronary artery. In whole-cell patches, the addition of fesoterodine to the bath inhibited the Kv currents in a concentration-dependent manner, with an IC50 value of 3.19 ± 0.91 µM and a Hill coefficient of 0.56 ± 0.03. Although the drug did not alter the voltage-dependence of steady-state activation, it shifted the steady-state inactivation curve to a more negative potential, suggesting that fesoterodine affects the voltage-sensor of the Kv channel. Inhibition by fesoterodine was significantly enhanced by repetitive train pulses (1 or 2 Hz). Furthermore, it significantly increased the recovery time constant from inactivation, suggesting that the Kv channel inhibition by fesoterodine is use (state)-dependent. Its inhibitory effect disappeared by pretreatment with a Kv 1.5 inhibitor. However, pretreatment with Kv2.1 or Kv7 inhibitors did not affect the inhibitory effects on Kv channels. Based on these results, we conclude that fesoterodine inhibits vascular Kv channels (mainly the Kv1.5 subtype) in a concentration- and use (state)-dependent manner, independent of muscarinic receptor antagonism.

14.
Toxicol Sci ; 189(2): 260-267, 2022 09 24.
Article in English | MEDLINE | ID: mdl-35944222

ABSTRACT

We investigated the effect of the acetylcholine muscarinic receptor inhibitor benztropine on voltage-dependent K+ (Kv) channels in rabbit coronary arterial smooth muscle cells. Benztropine inhibited Kv currents in a concentration-dependent manner, with an apparent IC50 value of 6.11 ± 0.80 µM and Hill coefficient of 0.62 ± 0.03. Benztropine shifted the steady-state activation curves toward a more positive potential, and the steady-state inactivation curves toward a more negative potential, suggesting that benztropine inhibited Kv channels by affecting the channel voltage sensor. Train pulse (1 or 2 Hz)-induced Kv currents were effectively reduced by the benztropine treatment. Furthermore, recovery time constants of Kv current inactivation increased significantly in response to benztropine. These results suggest that benztropine inhibited vascular Kv channels in a use (state)-dependent manner. The inhibitory effect of benztropine was canceled by pretreatment with the Kv 1.5 inhibitor, but there was no obvious change after pretreatment with Kv 2.1 or Kv7 inhibitors. In conclusion, benztropine inhibited the Kv current in a concentration- and use (state)-dependent manner. Inhibition of the Kv channels by benztropine primarily involved the Kv1.5 subtype. Restrictions are required when using benztropine to patients with vascular disease.


Subject(s)
Muscle, Smooth, Vascular , Potassium Channels, Voltage-Gated , Acetylcholine , Animals , Benztropine/pharmacology , Coronary Vessels , Myocytes, Smooth Muscle , Potassium Channel Blockers/pharmacology , Rabbits , Receptors, Muscarinic
15.
Biomed Eng Lett ; 12(3): 251-261, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35892035

ABSTRACT

Implantable medical devices capable of monitoring hundreds to thousands of electrodes have received great attention in biomedical applications for understanding of the brain function and to treat brain diseases such as epilepsy, dystonia, and Parkinson's disease. Non-invasive neural recording modalities such as fMRI and EEGs were widely used since the 1960s, but to acquire better information, invasive modalities gained popularity. Since such invasive neural recording system requires high efficiency and low power operation, they have been implemented as integrated circuits. Many techniques have been developed and applied when designing integrated high-density neural recording architecture for better performance, higher efficiency, and lower power consumption. This paper covers general knowledge of neural signals and frequently used neural recording architectures for monitoring neural activity. For neural recording architecture, various neural recording amplifier structures are covered. In addition, several neural processing techniques, which can optimize the neural recording system, are also discussed.

16.
Sci Rep ; 12(1): 12800, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35896703

ABSTRACT

Various agents, including ethylenediaminetetraacetic acid, oxalic acid, citric acid, and HCl, were applied to remove heavy metals from raw paper incineration ash and render the ash recyclable. Among these prepared agent solutions, ethylenediaminetetraacetic acid showed the highest efficiency for Pb removal, while oxalic acid showed the highest efficiencies for Cu, Cd, and As removal. Additionally, three modes of an advanced removal method, which involved the use of both ethylenediaminetetraacetic acid and oxalic acid, were considered for use at the end of the rendering process. Among these three modes of the advanced removal method, that which involved the simultaneous use of ethylenediaminetetraacetic acid and oxalic acid, i.e., a mixture of both solutions, showed the best heavy metal removal efficiencies. In detail, 11.9% of Cd, 10% of Hg, 28.42% of As, 31.29% of Cu, and 49.19% of Pb were removed when this method was used. Furthermore, the application of these three modes of the advanced removal method resulted in a decrease in the amounts of heavy metals eluted and brought about an increase in the CaO content of the treated incineration ash, while decreasing its Cl content. These combined results enhanced the solidification effect of the treated incineration ash. Thus, it was confirmed that the advanced removal method is a promising strategy by which recyclable paper incineration ash can be obtained.

17.
Microb Cell Fact ; 21(1): 113, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35672695

ABSTRACT

BACKGROUND: Inflammatory bowel disease (IBD) is a gastrointestinal disease characterized by diarrhea, rectal bleeding, abdominal pain, and weight loss. Recombinant probiotics producing specific proteins with IBD therapeutic potential are currently considered novel drug substitutes. In this study, a Bifidobacterium bifidum BGN4-SK strain was designed to produce the antioxidant enzymes streptococcal superoxide dismutase (SOD) and lactobacillus catalase (CAT), and a B. bifidum BGN4-pBESIL10 strain was proposed to generate an anti-inflammatory cytokine, human interleukin (IL)-10. In vitro and in vivo efficacy of these genetically modified Bifidobacterium strains were evaluated for colitis amelioration. RESULTS: In a lipopolysaccharide (LPS)-stimulated HT-29 cell model, tumor necrosis factor (TNF)-α and IL-8 production was significantly suppressed in the B. bifidum BGN4-SK treatment, followed by B. bifidum BGN4-pBESIL10 treatment, when compared to the LPS-treated control. Synergistic effects on TNF-α suppression were also observed. In a dextran sodium sulphate (DSS)-induced colitis mouse model, B. bifidum BGN4-SK treatment significantly enhanced levels of antioxidant enzymes SOD, glutathione peroxidase (GSH-Px) and CAT, compared to the DSS-only group. B. bifidum BGN4-SK significantly ameliorated the symptoms of DSS-induced colitis, increased the expression of tight junction genes (claudin and ZO-1), and decreased pro-inflammatory cytokines IL-6, IL-1ß and TNF-α. CONCLUSIONS: These findings suggest that B. bifidum BGN4-SK ameliorated DSS-induced colitis by generating antioxidant enzymes, maintaining the epithelial barrier, and decreasing the production of pro-inflammatory cytokines. Although B. bifidum BGN4-pBESIL10 exerted anti-inflammatory effects in vitro, the enhancement of IL-10 production and alleviation of colitis were very limited.


Subject(s)
Bifidobacterium bifidum , Colitis , Inflammatory Bowel Diseases , Probiotics , Animals , Anti-Inflammatory Agents/adverse effects , Antioxidants/metabolism , Bifidobacterium bifidum/genetics , Colitis/drug therapy , Colitis/therapy , Cytokines/metabolism , Dextran Sulfate/adverse effects , Dextran Sulfate/metabolism , Disease Models, Animal , Humans , Inflammatory Bowel Diseases/drug therapy , Interleukin-10/metabolism , Lipopolysaccharides , Mice , Probiotics/therapeutic use , Superoxide Dismutase/adverse effects , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
18.
Korean J Physiol Pharmacol ; 26(4): 277-285, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35766005

ABSTRACT

To investigate the adverse effects of clozapine on cardiovascular ion channels, we examined the inhibitory effect of clozapine on voltage-dependent K+ (Kv) channels in rabbit coronary arterial smooth muscle cells. Clozapine-induced inhibition of Kv channels occurred in a concentration-dependent manner with an half-inhibitory concentration value of 7.84 ± 4.86 µM and a Hill coefficient of 0.47 ± 0.06. Clozapine did not shift the steady-state activation or inactivation curves, suggesting that it inhibited Kv channels regardless of gating properties. Application of train pulses (1 and 2 Hz) progressively augmented the clozapine-induced inhibition of Kv channels in the presence of the drug. Furthermore, the recovery time constant from inactivation was increased in the presence of clozapine, suggesting that clozapine-induced inhibition of Kv channels is use (state)-dependent. Pretreatment of a Kv1.5 subtype inhibitor decreased the Kv current amplitudes, but additional application of clozapine did not further inhibit the Kv current. Pretreatment with Kv2.1 or Kv7 subtype inhibitors partially blocked the inhibitory effect of clozapine. Based on these results, we conclude that clozapine inhibits arterial Kv channels in a concentrationand use (state)-dependent manner. Kv1.5 is the major subtype involved in clozapine-induced inhibition of Kv channels, and Kv2.1 and Kv7 subtypes are partially involved.

19.
Sci Rep ; 12(1): 7839, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35552457

ABSTRACT

This study aimed to detect safety signals of rebamipide and search for adverse events (AEs) of rebamipide that are more common than those of other drugs for peptic ulcer disease (PUD) and gastroesophageal reflux disease (GERD) in the elderly population. A total of 101,735 AE reports for drugs used to treat PUD and GERD between 2009 and 2018 from the KIDS-KAERS database (KIDS-KD) were used. Disproportionality analysis was performed to calculate the proportional reporting ratio (PRR), reporting odds ratio (ROR), and information component (IC). Drug labels in Korea, Japan, and China were reviewed to identify signals that have been listed. AEs frequently reported in the elderly population were also analyzed. Seriousness and median time to AEs were evaluated for statistically significant AEs. A total of 14 signals were detected, and 4 signals (dry mouth, dermatitis, purpura/petechia, and fluid overload) were not listed on drug labels; however, they may be included as part of other listed AEs. In the elderly population, 11 AEs such as dyspepsia/indigestion/gastrointestinal distress, somnolence, dry mouth, and edema were common. These AEs were not serious and occurred within 2-9 days. This study identified possible AEs of rebamipide, a relatively safe drug.


Subject(s)
Gastroesophageal Reflux , Peptic Ulcer , Xerostomia , Adverse Drug Reaction Reporting Systems , Aged , Alanine/analogs & derivatives , Gastroesophageal Reflux/drug therapy , Humans , Peptic Ulcer/chemically induced , Peptic Ulcer/drug therapy , Quinolones
20.
Waste Manag ; 144: 272-284, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35421707

ABSTRACT

In this study, hydrogen production using food waste was optimized by investigating the effect of agitator types in anaerobic digestion reactors and catalysts for biogas reforming. The applied agitators were pitched blade and hydrofoil, and their effect on homogeneity was estimated using computational fluid dynamics. Reactors with different agitators were operated for 60 days for biogas production. Increased biogas production was observed in the reactor equipped with a hydrofoil agitator owing to its high homogeneity. In addition, Ni-CeZrO2 catalysts promoted with La2O3, CaO, or MgO were investigated for stable hydrogen production during the biogas reforming reaction using simulated gas based on biogas from the anaerobic digestion equipped the hydrofoil. Among the promoted catalysts, the MgO-promoted Ni-CeZrO2 catalyst displayed the best results for hydrogen production without significant deactivation. The stable catalytic performance of the MgO-promoted catalyst resulted from the close interaction between Ni and MgO, and its high oxygen storage capacity. Thus, 1216 L hydrogen and 646 L carbon monoxide were produced per kilogram volatile solid via the hydrogen production system that included anaerobic digestion and biogas reforming.


Subject(s)
Biofuels , Refuse Disposal , Anaerobiosis , Bioreactors , Food , Hydrogen , Magnesium Oxide , Methane
SELECTION OF CITATIONS
SEARCH DETAIL
...