Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 13(2)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36837695

ABSTRACT

In this work, inkjet printing technology was used to print a thin layer of a hydrophilic solution containing polydopamine as a binder and polyethyleneimine as a strong hydrophilic agent on a commercial hydrophobic membrane to produce a Janus membrane for membrane distillation. The pristine and modified membranes were tested in a direct-contact membrane distillation system with mineral oil-containing feedwater. The results revealed that an integrated and homogenous hydrophilic layer was printed on the membrane with small intrusions in the pores. The membrane, which contained three layers of inkjet-printed hydrophilic layers, showed a high underwater oil contact angle and a low in-air water contact angle. One-layer inkjet printing was not robust enough, but the triple-layer coated modified membrane maintained its anti-oil fouling performance even for a feed solution containing 70 g/L NaCl and 0.01 v/v% mineral oil concentration with a flux of around 20 L/m2h. This study implies the high potential of the inkjet printing technique as a facile surface modification strategy to improve membrane performance.

2.
Chemosphere ; 299: 134394, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35331744

ABSTRACT

Interfacial solar water evaporation has attracted tremendous attention for sunlight harvesting for water purification. However, salt formation and stability of the photothermal materials (PTMs) remain a challenge that need addressing before bringing this technology to real-world applications. In this work, a nanoscale thin film of gold (Au) on a polytetrafluoroethylene (PTFE) membrane has been prepared using a magnetic sputtering technique. The fabricated membrane displays a robust mechanical strength and chemical stability arising from the adhesiveness of the thin film Au nanolayer on the PTFE membrane as well as the chemical inertness of the noble metal PTM. The Au nanolayer/PTFE membrane with cellulose sponge substrate resulted in an evaporation rate of 0.88 kg m-2 h-1 under 1 sun intensity. Remarkable salt ion rejection of 99.9% has been obtained, meeting the required standard for drinking water. Moreover, the membrane exhibited excellent stability and reusability in natural seawater and high salinity brine (150 g/L) and even in severe conditions (acidic, basic, and oxidized). No noticeable salt formation was observed on the evaporator surface after the tests. These findings reveal promising prospects for using a magnetron sputtering technique to fabricate a stable photothermal membrane for seawater and high salinity brine desalination.


Subject(s)
Sunlight , Water Purification , Gold , Polytetrafluoroethylene , Water
3.
Chemosphere ; 287(Pt 2): 132169, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34500334

ABSTRACT

Due to the shortage of freshwater around the world, seawater is becoming an important water source. However, seawater contains a high concentration of bromide that can form harmful disinfection by-products during water disinfection. Therefore, the current seawater reverse osmosis (SWRO) has to adopt two-pass reverse osmosis (RO) configuration for effective bromide removal, increasing the overall desalination cost. In this study, a bromide selective composite electrode was developed for membrane capacitive deionisation (MCDI). The composite electrode was developed by coating a mixture of bromide selective resin and anion exchange polymer on the surface of the commercial activated carbon electrode, and its performance was compared to that of conventional carbon electrode. The results demonstrated that the composite electrode has ten times better bromide selectivity than the conventional carbon electrode. The study shows the potential application of MCDI for the selective removal of target ions from water sources and the potential for resource recovery through basic modification of commercial electrode.


Subject(s)
Bromides , Water Purification , Charcoal , Electrodes , Membranes, Artificial , Seawater , Wastewater
4.
Nanomaterials (Basel) ; 11(11)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34835633

ABSTRACT

Graphene oxide (GO) nanosheets were utilized as a selective layer on a highly porous polyvinyl alcohol (PVA) nanofiber support via a pressure-assisted self-assembly technique to synthesize composite nanofiltration membranes. The GO layer was rendered stable by cross-linking the nanosheets (GO-to-GO) and by linking them onto the support surface (GO-to-PVA) using glutaraldehyde (GA). The amounts of GO and GA deposited on the PVA substrate were varied to determine the optimum nanofiltration membrane both in terms of water flux and salt rejection performances. The successful GA cross-linking of GO interlayers and GO-PVA via acetalization was confirmed by FTIR and XPS analyses, which corroborated with other characterization results from contact angle and zeta potential measurements. Morphologies of the most effective membrane (CGOPVA-50) featured a defect-free GA cross-linked GO layer with a thickness of ~67 nm. The best solute rejections of the CGOPVA-50 membrane were 91.01% for Na2SO4 (20 mM), 98.12% for Eosin Y (10 mg/L), 76.92% for Methylene blue (10 mg/L), and 49.62% for NaCl (20 mM). These findings may provide one of the promising approaches in synthesizing mechanically stable GO-based thin-film composite membranes that are effective for solute separation via nanofiltration.

5.
Chemosphere ; 263: 128070, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33297074

ABSTRACT

A phosphonium-based ionic liquid (IL) with lower critical solution temperature (LCST) property was assessed as a reusable draw solution (DS) for forward osmosis (FO). Tetrabutylphosphonium p-toluenesulfonate ([P4444]TsO) was successfully synthesized by neutralization reaction. Characterization results reveal its ability to generate sufficient osmotic pressure (14-68 bars for 0.5-2 M DS) to create a gradient across the FO membrane. Its thermal, physico-chemical and other colligative properties are favorable for its application as an osmotic agent. The LCST behavior of [P4444]TsO was found reversible and its phase separation from water can be done above its cloud point temperature Tc ∼57 °C. In vitro cytotoxicity tests from LDH and MTT assay reveal that it can be safely used as DS at an effective concentration EC30 ∼57 mg L-1 as its non-toxic level. Results from FO operations demonstrate that 2 M [P4444]TsO DS can effectively treat saline feed like seawater (0.6 M NaCl) with reasonable Jv = 1.35 ± 0.15 L m-2h-1, low Js = 0.0038 ± 0.00049 mol m-2h-1, and considerably low specific solute flux (Js/Jv âˆ¼ 0.0028 mol L-1). After FO, ∼98% of [P4444]TsO was precipitated by heating the DS at 60 °C and conveniently reused with consistent FO performance. Direct contact membrane distillation (DCMD) was found effective in removing the residual 2% [P4444]TsO in the DS supernatant to finally produce high-quality effluent with concentrations way below the EC30 limit. Cost estimates for the entire process reveal the potential of FO combined with thermo-cyclic [P4444]TsO regeneration with DCMD for desalination application.


Subject(s)
Distillation , Water Purification , Benzenesulfonates , Membranes, Artificial , Organophosphorus Compounds , Osmosis , Seawater
6.
J Environ Manage ; 250: 109521, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31521035

ABSTRACT

This study focused on the preparation of undoped and Ca-doped titania from flocculation generated sludge. Initially, TiCl4 was utilised to perform coagulation and flocculation in synthetic wastewater and an optimised dose of coagulant was determined by evaluating the turbidity, dissolved organic carbon (DOC) and zeta potential of the treated water. Later, using Ca(OH)2 as a coagulant aid, the effects on effluent pH, turbidity and DOC removal were investigated. Both Ca-doped and undoped anatase TiO2 were prepared from the flocculated sludge for morphological and photocatalytic evaluation. During the standalone use of TiCl4, maximum turbidity and DOC removal were found at 11.63 and 14.54 mg Ti/L, respectively. At the corresponding coagulant dose, rapid deprotonation of water caused the pH of the effluent to reach below 3.77 mg Ti/L. Whereas, when using Ca(OH)2 as a coagulant aid, a neutral pH (7.26) was attained at a simultaneous dosing of 32.40 mg Ca/L and 14.54 mg Ti/L. When aided with Ca(OH)2, the turbidity removal was further increased by 54.28% and the DOC removal was somewhat similar to the standalone use of TiCl4. TiO2 was prepared by incinerating the collected sludge at 600 °C for 2 h. Both XRD and SEM analysis were conducted to observe the morphology of the prepared titania. The XRD pattern of the TiO2 showed only an anatase phase along with the presence of a high atomic proportion of Ca (4.14%). Consequently, a high amount of Ca atoms inhibited the level of TiO2 phase and no obvious presence of CaO was observed. The prepared Ca-doped TiO2 at the optimised dose of Ca(OH)2 was found to be inferior to the undoped TiO2 during the photodegradation of acetaldehyde. However, a reduced dose of Ca(OH)2 (<15 mg Ca/L) exhibited a substantial increase in photoactivity under UV irradiance.


Subject(s)
Wastewater , Water Purification , Flocculation , Sewage , Water
7.
Membranes (Basel) ; 8(3)2018 Aug 25.
Article in English | MEDLINE | ID: mdl-30149634

ABSTRACT

Electrospun nanofiber-supported thin film composite membranes are among the most promising membranes for seawater desalination via forward osmosis. In this study, a high-performance electrospun polyvinylidenefluoride (PVDF) nanofiber-supported thin film composite (TFC) membrane was successfully fabricated after molecular layer-by-layer polyelectrolyte deposition. Negatively-charged electrospun polyacrylic acid (PAA) nanofibers were deposited on electrospun PVDF nanofibers to form a support layer consisted of PVDF and PAA nanofibers. This resulted to a more hydrophilic support compared to the plain PVDF nanofiber support. The PVDF-PAA nanofiber support then underwent a layer-by-layer deposition of polyethylenimine (PEI) and PAA to form a polyelectrolyte layer on the nanofiber surface prior to interfacial polymerization, which forms the selective polyamide layer of TFC membranes. The resultant PVDF-LbL TFC membrane exhibited enhanced hydrophilicity and porosity, without sacrificing mechanical strength. As a result, it showed high pure water permeability and low structural parameter values of 4.12 L m-2 h-1 bar-1 and 221 µm, respectively, significantly better compared to commercial FO membrane. Layer-by-layer deposition of polyelectrolyte is therefore a useful and practical modification method for fabrication of high performance nanofiber-supported TFC membrane.

8.
Nat Commun ; 9(1): 683, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29445161

ABSTRACT

The inability of membranes to handle a wide spectrum of pollutants is an important unsolved problem for water treatment. Here we demonstrate water desalination via a membrane distillation process using a graphene membrane where water permeation is enabled by nanochannels of multilayer, mismatched, partially overlapping graphene grains. Graphene films derived from renewable oil exhibit significantly superior retention of water vapour flux and salt rejection rates, and a superior antifouling capability under a mixture of saline water containing contaminants such as oils and surfactants, compared to commercial distillation membranes. Moreover, real-world applicability of our membrane is demonstrated by processing sea water from Sydney Harbour over 72 h with macroscale membrane size of 4 cm2, processing ~0.5 L per day. Numerical simulations show that the channels between the mismatched grains serve as an effective water permeation route. Our research will pave the way for large-scale graphene-based antifouling membranes for diverse water treatment applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...