Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem C Nanomater Interfaces ; 127(48): 23537, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38090140

ABSTRACT

[This corrects the article DOI: 10.1021/acs.jpcc.3c05124.].

2.
Biomedicines ; 10(2)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35203530

ABSTRACT

Xp11.2 translocation renal cell carcinoma (tRCC), involving transcription factor E3 (TFE3) gene fusions, is a rare and aggressive RCC variant when present in adults and has been recently recognized as a unique entity in RCC. Biomarkers and treatment guidelines do not exist for patients with aggressive Xp11.2 tRCC. The aim was to identify and evaluate therapeutic biomarkers for aggressive Xp11.2 tRCC. RNA sequencing was performed using formalin-fixed, paraffin-embedded tissues from 11 adult patients with clinical T1N0M0 Xp11.2 tRCC, including three patients with aggressive characteristics (recurrence or cancer-specific death after nephrectomy). Thirty genes were differentially expressed between the aggressive and non-aggressive groups, even after adjustment, and were associated with KEGG pathways related to the aggressiveness of Xp11.2 tRCC. PIK3R2, involved in various KEGG pathways, including the PI3K/AKT/mTOR pathway, was overexpressed in the Xp11.2 tRCC cell lines UOK120 and UOK146. The PI3K pathway inhibitor LY294002 showed a significant therapeutic benefit. This study provides the first candidate biomarker, PIK3R2, for aggressive clinical T1N0M0 Xp11.2 tRCC. Furthermore, this study is the first to recommend a targeted drug, LY294002, for aggressive Xp11.2 tRCC based on the molecular pathophysiology.

3.
Biomedicines ; 10(1)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35052851

ABSTRACT

Immune checkpoint inhibitors and tyrosine kinase inhibitors are the first-line treatment for metastatic renal cell carcinoma (mRCC), but their benefits are limited to specific patient subsets. Here, we aimed to evaluate the therapeutic efficacy of JX-594 (pexastimogene devacirepvec, Pexa-vec) monotherapy by systemic injection in comparison with sunitinib monotherapy in metastatic orthotopic RCC murine models. Two highly metastatic orthotopic RCC models were developed to compare the treatment efficacy in the International Metastatic RCC Database Consortium favorable-risk and intermediate- or poor-risk groups. JX-594 was systemically injected through the peritoneum, whereas sunitinib was orally administered. Post-treatment, tumor microenvironment (TME) remodeling was determined using immunofluorescence analysis. Systemic JX-594 monotherapy injection demonstrated therapeutic benefit in both early- and advanced-stage mRCC models. Sunitinib monotherapy significantly reduced the primary tumor burden and number of lung metastases in the early-stage, but not in the advanced-stage mRCC model. Systemic JX-594 delivery remodeled the primary TME and lung metastatic sites by increasing tumor-infiltrating CD4/8+ T cells and dendritic cells. Systemic JX-594 monotherapy demonstrated significantly better therapeutic outcomes compared with sunitinib monotherapy in both early- and advanced-stage mRCCs by converting cold tumors into hot tumors. Sunitinib monotherapy effectively suppressed primary tumor growth and lung metastasis in early-stage mRCC.

4.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(9): 980-990, 2018 09.
Article in English | MEDLINE | ID: mdl-29787912

ABSTRACT

Given their important role in neuronal function, there has been an increasing focus on altered lipid levels in brain disorders. The effect of a high-fat (HF) diet on the lipid profiles of the cortex, hippocampus, hypothalamus, and olfactory bulb of the mouse brain was investigated using nanoflow ultrahigh pressure liquid chromatography-electrospray ionization-tandem mass spectrometry in the current study. For 8 weeks, two groups of 5-week-old mice were fed either an HF or normal diet (6 mice from each group analyzed as the F and N groups, respectively). The remaining mice in both groups then received a 4-week normal diet. Each group was then subdivided into two groups for another 4-week HF or normal diet. Quantitative analysis of 270 of the 359 lipids identified from brain tissue revealed that an HF diet significantly affected the brain lipidome in all brain regions that were analyzed. The HF diet significantly increased diacylglycerols, which play a role in insulin resistance in all regions that were analyzed. Although the HF diet increased most lipid species, the majority of phosphatidylserine species were decreased, while lysophosphatidylserine species, with the same acyl chain, were substantially increased. This result can be attributed to increased oxidative stress due to the HF diet. Further, weight-cycling (yo-yo effect) was found more critical for the perturbation of brain lipid profiles than weight gain without a preliminary experience of an HF diet. The present study reveals systematic alterations in brain lipid levels upon HF diet analyzed either by lipid class and molecular levels.


Subject(s)
Cerebral Cortex/drug effects , Diet, High-Fat , Dietary Fats/administration & dosage , Hippocampus/drug effects , Hypothalamus/drug effects , Metabolome , Olfactory Bulb/drug effects , Animals , Brain Chemistry , Cerebral Cortex/metabolism , Chromatography, High Pressure Liquid , Diglycerides/agonists , Diglycerides/metabolism , Hippocampus/metabolism , Hypothalamus/metabolism , Insulin Resistance , Lipid Metabolism/drug effects , Lysophospholipids/agonists , Lysophospholipids/metabolism , Male , Mice , Mice, Inbred C57BL , Olfactory Bulb/metabolism , Oxidative Stress , Phosphatidylserines/antagonists & inhibitors , Phosphatidylserines/metabolism , Spectrometry, Mass, Electrospray Ionization
5.
Sci Rep ; 7(1): 3302, 2017 06 12.
Article in English | MEDLINE | ID: mdl-28607433

ABSTRACT

Tumour suppressor p53 is known to be associated with the maintenance of mitochondrial functional properties in the skeletal muscles. As deactivation or mutation of p53 can affect the synthesis of lipids, investigating the relationship between p53-related energy generation metabolism and perturbation of lipid profile is critical. In this study, 329 lipid species (among 412 identified species) in two different skeletal muscle tissues (the gastrocnemius and soleus) from p53 knockout (KO) mice were quantitatively analysed using nanoflow ultrahigh performance liquid chromatography tandem mass spectrometry (nUPLC-MS/MS). Overall, lipids from the soleus tissues were more affected by p53 KO than those from the gastrocnemius in most lipid profiles. In p53 KO, lysophosphatidylcholine (LPC), lysophosphatidylserine (LPS), phosphatidic acid (PA), sphingomyelin (SM), and triacylglycerol (TAG), including 6 TAG (44:2, 46:0, 58:5, 58:8, 58:9, and 50:0), were significantly increased (p < 0.05) by 1.4-2-fold only in the soleus tissue. Overall monohexosylceramide (MHC) levels, including those of 3 MHC species (d18:0/24:0, d18:1/22:0, and d18:1/24:0), were significantly increased (p < 0.05) by 2-4 fold, only in the gastrocnemius tissue. The results suggest that lipid profiles are significantly altered by the lack of p53 in muscle tissues.


Subject(s)
Lipid Metabolism , Metabolomics/methods , Muscle, Skeletal/metabolism , Spectrometry, Mass, Electrospray Ionization , Tumor Suppressor Protein p53/metabolism , Animals , Chromatography, High Pressure Liquid , Mice, Knockout , Principal Component Analysis
6.
J Proteome Res ; 15(10): 3763-3772, 2016 10 07.
Article in English | MEDLINE | ID: mdl-27581229

ABSTRACT

Lipids are important signaling molecules regulating biological processes under normal and diseased conditions. Although p53 mutation is well-known for causing cancer, the relationship between p53-related tumorigenesis and altered lipid profile is unclear. We profiled differences in lipid expressions in liver, lung, and kidney in p53 knockout (KO) mice by high-speed quantitative analysis of 320 lipids (399 species identified) using nanoflow ultrahigh performance liquid chromatography-tandem mass spectrometry (nUPLC-MS/MS). Lung tissues were most severely affected by the lack of p53 gene, as shown by significant reduction (24-44%, P < 0.05) in total phosphatidylcholine (PC), phosphatidylethanolamine (PE), sphingomyelin (SM), diacylglycerol (DG), and triacylglycerol (TG), and significant increases (30-50%) in phosphatidylserine (PS), phosphatidylinositol (PI), and monohexosylceramide (MHC). MHC levels increased in all tissues. Dihexosylceramide (DHC) level decreased only in kidney tissue. Most PI, PS, and phosphatidic acid (PA) species showing significant increases contained a saturated acyl chain (18:0) in lung and liver tissues. Neutral glycerolipids (16:0/22:0-DG and most TGs with saturated and monounsaturated acyl chains) decreased 2-4-fold in the liver tissue. Our results suggest that the lack of p53 and altered lipid profiles are closely related, but as their changes vary from one tissue to another, the lipid alterations are tissue-specific.


Subject(s)
Kidney/chemistry , Lipid Metabolism , Liver/chemistry , Lung/chemistry , Tumor Suppressor Protein p53/deficiency , Animals , Chromatography, Liquid , Kidney/metabolism , Liver/metabolism , Lung/metabolism , Mice , Mice, Knockout , Organ Specificity , Tandem Mass Spectrometry , Tumor Suppressor Protein p53/genetics
7.
J Chromatogr A ; 1464: 12-20, 2016 Sep 16.
Article in English | MEDLINE | ID: mdl-27530420

ABSTRACT

An on-line lipid extraction method is introduced by utilizing a short capillary extraction column using HILIC and C4 particles prior to nanoflow liquid chromatography-tandem mass spectrometry (nLC-MS/MS). The on-line extraction using a urine sample spiked with PL standards showed similar or slightly higher recovery values (86%-96%) of phospholipids (PLs) compared to those obtained by the conventional off-line extraction based on the Folch method with or without using the air-exposed drying process. In this study, we demonstrated that PL oxidation can occur during the air-exposed drying process of lipid extracts in standard liquid-liquid extraction procedures, which was confirmed by the oxidized PL (OxPL) molecules that were generated from an off-line extraction using a few PL standards. Quantitative comparison of these OxPL species between on- and off-line extraction followed by nLC-MS/MS with multiple reaction monitoring (MRM) analysis showed a significant decrease (2-10 fold) in unwanted OxPL species when on-line extraction was employed. While the number of identified PLs from a urine sample was somewhat lower than those by off-line extraction, the number of OxPLs was significantly reduced (from 70 to 22) with on-line extraction. The new method offers high speed (∼5min) automated extraction of PLs with nLC-MS/MS analysis and presents the possibility of handling a biological sample with a very limited amount of lipids.


Subject(s)
Automation/methods , Chromatography, Liquid/methods , Liquid-Liquid Extraction/methods , Phospholipids/isolation & purification , Tandem Mass Spectrometry/methods , Automation/instrumentation , Humans , Liquid-Liquid Extraction/instrumentation , Oxidation-Reduction , Phospholipids/chemistry , Phospholipids/urine , Spectrometry, Mass, Electrospray Ionization/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...