Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Chem Sci ; 13(11): 3147-3160, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35414872

ABSTRACT

The antibody-drug conjugate (ADC) is a well-validated modality for the cell-specific delivery of small molecules with impact expanding rapidly beyond their originally-intended purpose of treating cancer. However, antibody-mediated delivery (AMD) remains inefficient, limiting its applicability to targeting highly potent payloads to cells with high antigen expression. Maximizing the number of payloads delivered per antibody is one key way in which delivery efficiency can be improved, although this has been challenging to carry out; with few exceptions, increasing the drug-to-antibody ratio (DAR) above ∼4 typically destroys the biophysical properties and in vivo efficacy for ADCs. Herein, we describe the development of a novel bioconjugation platform combining cysteine-engineered (THIOMAB) antibodies and recombinant XTEN polypeptides for the unprecedented generation of homogeneous, stable "TXCs" with DAR of up to 18. Across three different bioactive payloads, we demonstrated improved AMD to tumors and Staphylococcus aureus bacteria for high-DAR TXCs relative to conventional low-DAR ADCs.

2.
Pediatr Pulmonol ; 57(2): 519-528, 2022 02.
Article in English | MEDLINE | ID: mdl-34842360

ABSTRACT

BACKGROUND: Biomarkers that can risk-stratify children with influenza virus lower respiratory infection may identify patients for targeted intervention. Early elevation of alveolar-related proteins in the bloodstream in these patients could indicate more severe lung damage portending worse outcomes. METHODS: We used a mouse model of human influenza infection and evaluated relationships between lung pathophysiology and surfactant protein D (SP-D), SP-A, and Club cell protein 16 (CC16). We then measured SP-A, SP-D, and CC16 levels in plasma samples from 94 children with influenza-associated acute respiratory failure (PICFLU cohort), excluding children with underlying conditions explaining disease severity. We tested for associations between levels of circulating proteins and disease severity including the diagnosis of acute respiratory distress syndrome (ARDS), mechanical ventilator, intensive care unit and hospital days, and hospital mortality. RESULTS: Circulating SP-D showed a greater increase than SP-A and CC16 in mice with increased alveolar-vascular permeability following influenza infection. In the PICFLU cohort, SP-D was associated with moderate-severe ARDS diagnosis (p = 0.01) and with mechanical ventilator (r = 0.45, p = 0.002), ICU (r = 0.44, p = 0.002), and hospital days (r = 0.37, p = 0.001) in influenza-infected children without bacterial coinfection. Levels of SP-D were lower in children with secondary bacterial pneumonia (p = 0.01) and not associated with outcomes. CC16 and SP-A levels did not differ with bacterial coinfection and were not consistently associated with severe outcomes. CONCLUSIONS: SP-D has potential as an early circulating biomarker reflecting a degree of lung damage caused directly by influenza virus infection in children. Secondary bacterial pneumonia alters SP-D biomarker performance.


Subject(s)
Influenza, Human , Lung Injury , Respiratory Distress Syndrome , Animals , Biomarkers , Child , Humans , Influenza, Human/complications , Lung Injury/complications , Mice , Pulmonary Surfactant-Associated Protein D
3.
J Nurs Care Qual ; 36(3): 274-278, 2021.
Article in English | MEDLINE | ID: mdl-32826697

ABSTRACT

BACKGROUND: A common complication of diabetes mellitus (DM) is diabetic retinopathy (DR). LOCAL PROBLEM: An audit in a primary care office found that fewer than 50% of patients with DM received an annual ocular examination. The aim of this project was to increase timely annual ocular examinations among patients with type 2 DM to 85% within 90 days. METHODS: The model for improvement with 4 Plan-Do-Study-Act (PDSA) cycles was implemented in a rapid cycle format as well as changes in an electronic medical record (EMR) checklist and referral processes. INTERVENTIONS: Interventions included team huddles and trainings, the Association of Diabetes Care and Education Specialists checklist with additional information about DR, an EMR checklist, and a logbook referral tracking process changes. RESULTS: Of the patients referred during the project, 87% completed the ocular appointment, and the rate for patients with DM having annual ocular examinations increased from 48% to 86% meeting the current guideline of the American Diabetes Association. CONCLUSIONS: Timely annual ocular examinations increased to 86% in 90 days, thus improving current DM treatment guidelines in primary care.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetes Mellitus , Diabetic Retinopathy , Humans , Primary Health Care , Referral and Consultation
4.
Nature ; 584(7821): 479-483, 2020 08.
Article in English | MEDLINE | ID: mdl-32788728

ABSTRACT

Lipopolysaccharide (LPS) resides in the outer membrane of Gram-negative bacteria where it is responsible for barrier function1,2. LPS can cause death as a result of septic shock, and its lipid A core is the target of polymyxin antibiotics3,4. Despite the clinical importance of polymyxins and the emergence of multidrug resistant strains5, our understanding of the bacterial factors that regulate LPS biogenesis is incomplete. Here we characterize the inner membrane protein PbgA and report that its depletion attenuates the virulence of Escherichia coli by reducing levels of LPS and outer membrane integrity. In contrast to previous claims that PbgA functions as a cardiolipin transporter6-9, our structural analyses and physiological studies identify a lipid A-binding motif along the periplasmic leaflet of the inner membrane. Synthetic PbgA-derived peptides selectively bind to LPS in vitro and inhibit the growth of diverse Gram-negative bacteria, including polymyxin-resistant strains. Proteomic, genetic and pharmacological experiments uncover a model in which direct periplasmic sensing of LPS by PbgA coordinates the biosynthesis of lipid A by regulating the stability of LpxC, a key cytoplasmic biosynthetic enzyme10-12. In summary, we find that PbgA has an unexpected but essential role in the regulation of LPS biogenesis, presents a new structural basis for the selective recognition of lipids, and provides opportunities for future antibiotic discovery.


Subject(s)
Cell Membrane/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/chemistry , Escherichia coli/pathogenicity , Lipopolysaccharides/chemistry , Lipopolysaccharides/metabolism , Amidohydrolases/chemistry , Amidohydrolases/metabolism , Amino Acid Motifs , Bacterial Outer Membrane/chemistry , Bacterial Outer Membrane/metabolism , Binding Sites , Cell Membrane/metabolism , Enzyme Stability , Escherichia coli/cytology , Escherichia coli/drug effects , Genes, Essential , Hydrolases/chemistry , Hydrolases/metabolism , Lipid A/chemistry , Lipid A/metabolism , Lipopolysaccharides/biosynthesis , Microbial Sensitivity Tests , Microbial Viability/drug effects , Models, Molecular , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Periplasm/chemistry , Periplasm/metabolism , Protein Binding , Virulence
5.
J Leukoc Biol ; 107(6): 941-952, 2020 06.
Article in English | MEDLINE | ID: mdl-31985117

ABSTRACT

Receptor interacting protein kinase 1 (RIP1) is a critical effector of inflammatory responses and cell death activation. Cell death pathways regulated by RIP1 include caspase-dependent apoptosis and caspase-independent necroptosis. The kinase activity of RIP1 has been associated with a number of inflammatory, neurodegenerative, and oncogenic diseases. In this study, we use the RIP1 kinase inhibitor GNE684 to demonstrate that RIP1 inhibition can effectively block skin inflammation and immune cell infiltrates in livers of Sharpin mutant (Cpdm; chronic proliferative dermatitis) mice in an interventional setting, after disease onset. On the other hand, genetic inactivation of RIP1 (RIP1 KD) or ablation of RIP3 (RIP3 KO) or MLKL (MLKL KO) did not affect testicular pathology of aging male mice. Likewise, infection with vaccinia virus or with mouse gammaherpesvirus MHV68 resulted in similar viral clearance in wild-type, RIP1 KD, and RIP3 KO mice. In summary, this study highlights the benefits of inhibiting RIP1 in skin inflammation, as opposed to its lack of relevance for testicular longevity and the response to certain viral infections.


Subject(s)
Dermatitis/genetics , Herpesviridae Infections/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Skin/immunology , Vaccinia/genetics , Animals , Chronic Disease , Dermatitis/immunology , Dermatitis/pathology , Dermatitis/virology , Disease Models, Animal , Gammaherpesvirinae/immunology , Gammaherpesvirinae/pathogenicity , Gene Expression Regulation , Herpesviridae Infections/pathology , Herpesviridae Infections/virology , Inflammation , Liver/immunology , Liver/pathology , Liver/virology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Kinase Inhibitors/pharmacology , Protein Kinases/deficiency , Protein Kinases/genetics , Protein Kinases/immunology , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Receptor-Interacting Protein Serine-Threonine Kinases/deficiency , Receptor-Interacting Protein Serine-Threonine Kinases/immunology , Signal Transduction , Skin/pathology , Skin/virology , Testis/immunology , Testis/pathology , Testis/virology , Vaccinia/immunology , Vaccinia/pathology , Vaccinia/virology , Vaccinia virus/immunology , Vaccinia virus/pathogenicity , Virus Replication/immunology
6.
Cell Rep ; 25(1): 80-94, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30282040

ABSTRACT

We examined hematopoietic protein kinase 1 (HPK1), whose reliance on scaffold versus kinase functions for negative immune cell regulation is poorly understood and critical to its assessment as a viable drug target. We identify kinase-dependent roles for HPK1 in CD8 T cells that restrict their anti-viral and anti-tumor responses by using HPK1 kinase-dead (HPK1.kd) knockin mice. Loss of HPK1 kinase function enhanced T cell receptor signaling and cytokine secretion in a T-cell-intrinsic manner. In response to chronic lymphocytic choriomeningitis virus (LCMV) infection or tumor challenge, viral clearance and tumor growth inhibition were enhanced in HPK1.kd mice, accompanied by an increase in effector CD8 T cell function. Co-blockade of PD-L1 further enhanced T effector cell function, resulting in superior anti-viral and anti-tumor immunity over single target blockade. These results identify the importance of HPK1 kinase activity in the negative regulation of CD8 effector functions, implicating its potential as a cancer immunotherapy target.


Subject(s)
Protein Serine-Threonine Kinases/metabolism , T-Lymphocytes/enzymology , T-Lymphocytes/immunology , Animals , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/enzymology , CD8-Positive T-Lymphocytes/immunology , Colonic Neoplasms/immunology , Colonic Neoplasms/therapy , Female , Glioma/immunology , Glioma/therapy , Immunotherapy , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/immunology , Random Allocation , Signal Transduction
7.
Nature ; 561(7722): 189-194, 2018 09.
Article in English | MEDLINE | ID: mdl-30209367

ABSTRACT

Multidrug-resistant bacteria are spreading at alarming rates, and despite extensive efforts no new class of antibiotic with activity against Gram-negative bacteria has been approved in over fifty years. Natural products and their derivatives have a key role in combating Gram-negative pathogens. Here we report chemical optimization of the arylomycins-a class of natural products with weak activity and limited spectrum-to obtain G0775, a molecule with potent, broad-spectrum activity against Gram-negative bacteria. G0775 inhibits the essential bacterial type I signal peptidase, a new antibiotic target, through an unprecedented molecular mechanism. It circumvents existing antibiotic resistance mechanisms and retains activity against contemporary multidrug-resistant Gram-negative clinical isolates in vitro and in several in vivo infection models. These findings demonstrate that optimized arylomycin analogues such as G0775 could translate into new therapies to address the growing threat of multidrug-resistant Gram-negative infections.


Subject(s)
Anti-Bacterial Agents/classification , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/drug effects , Peptides, Cyclic/pharmacology , Biocatalysis/drug effects , Biological Products/classification , Biological Products/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Escherichia coli/enzymology , Gram-Negative Bacteria/enzymology , Gram-Negative Bacteria/pathogenicity , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/microbiology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/pathogenicity , Lysine/metabolism , Membrane Proteins/antagonists & inhibitors , Microbial Sensitivity Tests , Peptides, Cyclic/chemistry , Porins , Protein Binding , Protein Domains , Serine Endopeptidases , Substrate Specificity
8.
Article in English | MEDLINE | ID: mdl-30104274

ABSTRACT

There is a critical need for new antibacterial strategies to counter the growing problem of antibiotic resistance. In Gram-negative bacteria, the outer membrane (OM) provides a protective barrier against antibiotics and other environmental insults. The outer leaflet of the outer membrane is primarily composed of lipopolysaccharide (LPS). Outer membrane biogenesis presents many potentially compelling drug targets as this pathway is absent in higher eukaryotes. Most proteins involved in LPS biosynthesis and transport are essential; however, few compounds have been identified that inhibit these proteins. The inner membrane ABC transporter MsbA carries out the first essential step in the trafficking of LPS to the outer membrane. We conducted a biochemical screen for inhibitors of MsbA and identified a series of quinoline compounds that kill Escherichia coli through inhibition of its ATPase and transport activity, with no loss of activity against clinical multidrug-resistant strains. Identification of these selective inhibitors indicates that MsbA is a viable target for new antibiotics, and the compounds we identified serve as useful tools to further probe the LPS transport pathway in Gram-negative bacteria.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Lipopolysaccharides/metabolism , Anti-Bacterial Agents/pharmacology , Biological Transport/drug effects , Biological Transport/physiology , Escherichia coli/drug effects
9.
Sci Rep ; 8(1): 7136, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29740124

ABSTRACT

Outer membrane proteins (OMPs) in Gram-negative bacteria are essential for a number of cellular functions including nutrient transport and drug efflux. Escherichia coli BamA is an essential component of the OMP ß-barrel assembly machinery and a potential novel antibacterial target that has been proposed to undergo large (~15 Å) conformational changes. Here, we explored methods to isolate anti-BamA monoclonal antibodies (mAbs) that might alter the function of this OMP and ultimately lead to bacterial growth inhibition. We first optimized traditional immunization approaches but failed to identify mAbs that altered cell growth after screening >3000 hybridomas. We then developed a "targeted boost-and-sort" strategy that combines bacterial cell immunizations, purified BamA protein boosts, and single hybridoma cell sorting using amphipol-reconstituted BamA antigen. This unique workflow improves the discovery efficiency of FACS + mAbs by >600-fold and enabled the identification of rare anti-BamA mAbs with bacterial growth inhibitory activity in the presence of a truncated lipopolysaccharide layer. These mAbs represent novel tools for dissecting the BamA-mediated mechanism of ß-barrel folding and our workflow establishes a new template for the efficient discovery of novel mAbs against other highly dynamic membrane proteins.


Subject(s)
Antibodies, Monoclonal/immunology , Bacterial Outer Membrane Proteins/genetics , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/isolation & purification , Bacterial Outer Membrane Proteins/immunology , Escherichia coli/immunology , Escherichia coli Proteins/immunology , Immunization , Protein Conformation , Protein Folding , Protein Transport/genetics , Protein Transport/immunology , Vaccination
11.
Nat Commun ; 8: 14234, 2017 01 19.
Article in English | MEDLINE | ID: mdl-28102191

ABSTRACT

Influenza B virus (IBV) causes annual influenza epidemics around the world. Here we use an in vivo plasmablast enrichment technique to isolate a human monoclonal antibody, 46B8 that neutralizes all IBVs tested in vitro and protects mice against lethal challenge of all IBVs tested when administered 72 h post infection. 46B8 demonstrates a superior therapeutic benefit over Tamiflu and has an additive antiviral effect in combination with Tamiflu. 46B8 binds to a conserved epitope in the vestigial esterase domain of hemagglutinin (HA) and blocks HA-mediated membrane fusion. After passage of the B/Brisbane/60/2008 virus in the presence of 46B8, we isolated three resistant clones, all harbouring the same mutation (Ser301Phe) in HA that abolishes 46B8 binding to HA at low pH. Interestingly, 46B8 is still able to protect mice against lethal challenge of the mutant viruses, possibly owing to its ability to mediate antibody-dependent cellular cytotoxicity (ADCC).


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , Immunoglobulin G/therapeutic use , Influenza B virus , Orthomyxoviridae Infections/therapy , Animals , Antibodies, Neutralizing/immunology , Epitopes , Hemagglutinins , Humans , Hydrogen-Ion Concentration , Immunoglobulin G/immunology , Mice , Models, Molecular , Orthomyxoviridae Infections/virology , Oseltamivir , Protein Conformation
12.
PLoS Pathog ; 12(6): e1005702, 2016 06.
Article in English | MEDLINE | ID: mdl-27351973

ABSTRACT

Broadly neutralizing antibodies targeting the stalk region of influenza A virus (IAV) hemagglutinin (HA) are effective in blocking virus infection both in vitro and in vivo. The highly conserved epitopes recognized by these antibodies are critical for the membrane fusion function of HA and therefore less likely to be permissive for virus mutational escape. Here we report three resistant viruses of the A/Perth/16/2009 strain that were selected in the presence of a broadly neutralizing stalk-binding antibody. The three resistant viruses harbor three different mutations in the HA stalk: (1) Gln387Lys; (2) Asp391Tyr; (3) Asp391Gly. The Gln387Lys mutation completely abolishes binding of the antibody to the HA stalk epitope. The other two mutations, Asp391Tyr and Asp391Gly, do not affect antibody binding at neutral pH and only slightly reduce binding at low pH. Interestingly, they enhance the fusion ability of the HA, representing a novel mechanism that allows productive membrane fusion even in the presence of antibody and hence virus escape from antibody neutralization. Therefore, these mutations illustrate two different resistance mechanisms used by IAV to escape broadly neutralizing stalk-binding antibodies. Compared to the wild type virus, the resistant viruses release fewer progeny viral particles during replication and are more sensitive to Tamiflu, suggesting reduced viral fitness.


Subject(s)
Antibodies, Neutralizing/immunology , Drug Resistance, Microbial/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Immune Evasion/immunology , Influenza A virus/immunology , Animals , Antibodies, Viral/immunology , Blotting, Western , Dogs , Flow Cytometry , Humans , Immunohistochemistry , Influenza, Human/immunology , Madin Darby Canine Kidney Cells , Mice , Neutralization Tests , Orthomyxoviridae Infections/immunology , Polymerase Chain Reaction
13.
J Bacteriol ; 198(14): 2001-2015, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27161118

ABSTRACT

UNLABELLED: De novo guanine biosynthesis is an evolutionarily conserved pathway that creates sufficient nucleotides to support DNA replication, transcription, and translation. Bacteria can also salvage nutrients from the environment to supplement the de novo pathway, but the relative importance of either pathway during Staphylococcus aureus infection is not known. In S. aureus, genes important for both de novo and salvage pathways are regulated by a guanine riboswitch. Bacterial riboswitches have attracted attention as a novel class of antibacterial drug targets because they have high affinity for small molecules, are absent in humans, and regulate the expression of multiple genes, including those essential for cell viability. Genetic and biophysical methods confirm the existence of a bona fide guanine riboswitch upstream of an operon encoding xanthine phosphoribosyltransferase (xpt), xanthine permease (pbuX), inosine-5'-monophosphate dehydrogenase (guaB), and GMP synthetase (guaA) that represses the expression of these genes in response to guanine. We found that S. aureus guaB and guaA are also transcribed independently of riboswitch control by alternative promoter elements. Deletion of xpt-pbuX-guaB-guaA genes resulted in guanine auxotrophy, failure to grow in human serum, profound abnormalities in cell morphology, and avirulence in mouse infection models, whereas deletion of the purine salvage genes xpt-pbuX had none of these effects. Disruption of guaB or guaA recapitulates the xpt-pbuX-guaB-guaA deletion in vivo In total, the data demonstrate that targeting the guanine riboswitch alone is insufficient to treat S. aureus infections but that inhibition of guaA or guaB could have therapeutic utility. IMPORTANCE: De novo guanine biosynthesis and purine salvage genes were reported to be regulated by a guanine riboswitch in Staphylococcus aureus We demonstrate here that this is not true, because alternative promoter elements that uncouple the de novo pathway from riboswitch regulation were identified. We found that in animal models of infection, the purine salvage pathway is insufficient for S. aureus survival in the absence of de novo guanine biosynthesis. These data suggest targeting the de novo guanine biosynthesis pathway may have therapeutic utility in the treatment of S. aureus infections.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Guanine/biosynthesis , Purines/metabolism , Riboswitch , Staphylococcal Infections/microbiology , Staphylococcus aureus/metabolism , Animals , Bacterial Proteins/genetics , Female , Humans , Mice , Staphylococcus aureus/genetics
14.
MAbs ; 8(5): 991-7, 2016 07.
Article in English | MEDLINE | ID: mdl-27031797

ABSTRACT

MHAA4549A is a human immunoglobulin G1 (IgG1) monoclonal antibody that binds to a highly conserved epitope on the stalk of influenza A hemagglutinin and blocks the hemagglutinin-mediated membrane fusion in the endosome, neutralizing all known human influenza A strains. Pharmacokinetics (PK) of MHAA4549A and its related antibodies were determined in DBA/2J and Balb-c mice at 5 mg/kg and in cynomolgus monkeys at 5 and 100 mg/kg as a single intravenous dose. Serum samples were analyzed for antibody concentrations using an ELISA and the PK was evaluated using WinNonlin software. Human PK profiles were projected based on the PK in monkeys using species-invariant time method. The human efficacious dose projection was based on in vivo nonclinical pharmacological active doses, exposure in mouse infection models and expected human PK. The PK profiles of MHAA4549A and its related antibody showed a linear bi-exponential disposition in mice and cynomolgus monkeys. In mice, clearance and half-life ranged from 5.77 to 9.98 mL/day/kg and 10.2 to 5.76 days, respectively. In cynomolgus monkeys, clearance and half-life ranged from 4.33 to 4.34 mL/day/kg and 11.3 to 11.9 days, respectively. The predicted clearance in humans was ∼2.60 mL/day/kg. A single intravenous dose ranging from 15 to 45 mg/kg was predicted to achieve efficacious exposure in humans. In conclusion, the PK of MHAA4549A was as expected for a human IgG1 monoclonal antibody that lacks known endogenous host targets. The predicted clearance and projected efficacious doses in humans for MHAA4549A have been verified in a Phase 1 study and Phase 2a study, respectively.


Subject(s)
Antibodies, Monoclonal/pharmacokinetics , Antibodies, Viral/pharmacology , Influenza, Human/drug therapy , Animals , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Macaca fascicularis , Mice , Mice, Inbred BALB C , Mice, Inbred DBA , Models, Theoretical
15.
Nature ; 527(7578): 323-8, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26536114

ABSTRACT

Staphylococcus aureus is considered to be an extracellular pathogen. However, survival of S. aureus within host cells may provide a reservoir relatively protected from antibiotics, thus enabling long-term colonization of the host and explaining clinical failures and relapses after antibiotic therapy. Here we confirm that intracellular reservoirs of S. aureus in mice comprise a virulent subset of bacteria that can establish infection even in the presence of vancomycin, and we introduce a novel therapeutic that effectively kills intracellular S. aureus. This antibody-antibiotic conjugate consists of an anti-S. aureus antibody conjugated to a highly efficacious antibiotic that is activated only after it is released in the proteolytic environment of the phagolysosome. The antibody-antibiotic conjugate is superior to vancomycin for treatment of bacteraemia and provides direct evidence that intracellular S. aureus represents an important component of invasive infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteremia , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Intracellular Space/microbiology , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects , Vancomycin/pharmacology , Animals , Anti-Bacterial Agents/therapeutic use , Bacteremia/drug therapy , Bacteremia/microbiology , Carrier State/drug therapy , Carrier State/microbiology , Drug Design , Female , Immunoconjugates/chemistry , Intracellular Space/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Mice , Microbial Sensitivity Tests , Phagosomes/drug effects , Phagosomes/metabolism , Phagosomes/microbiology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/pathology , Staphylococcus aureus/pathogenicity , Vancomycin/therapeutic use
16.
PLoS One ; 10(9): e0138350, 2015.
Article in English | MEDLINE | ID: mdl-26379037

ABSTRACT

Manganese plays a central role in cellular detoxification of reactive oxygen species (ROS). Therefore, manganese acquisition is considered to be important for bacterial pathogenesis by counteracting the oxidative burst of phagocytic cells during host infection. However, detailed analysis of the interplay between bacterial manganese acquisition and phagocytic cells and its impact on bacterial pathogenesis has remained elusive for Staphylococcus aureus, a major human pathogen. Here, we show that a mntC mutant, which lacks the functional manganese transporter MntABC, was more sensitive to killing by human neutrophils but not murine macrophages, unless the mntC mutant was pre-exposed to oxidative stress. Notably, the mntC mutant formed strikingly small colonies when recovered from both type of phagocytic cells. We show that this phenotype is a direct consequence of the inability of the mntC mutant to reinitiate growth after exposure to phagocytic oxidative burst. Transcript and quantitative proteomics analyses revealed that the manganese-dependent ribonucleotide reductase complex NrdEF, which is essential for DNA synthesis and repair, was highly induced in the mntC mutant under oxidative stress conditions including after phagocytosis. Since NrdEF proteins are essential for S. aureus viability we hypothesize that cells lacking MntABC might attempt to compensate for the impaired function of NrdEF by increasing their expression. Our data suggest that besides ROS detoxification, functional manganese acquisition is likely crucial for S. aureus pathogenesis by repairing oxidative damages, thereby ensuring efficient bacterial growth after phagocytic oxidative burst, which is an attribute critical for disseminating and establishing infection in the host.


Subject(s)
Bacterial Proteins/genetics , DNA Replication/genetics , Manganese/metabolism , Membrane Transport Proteins/genetics , Oxidative Stress/genetics , Respiratory Burst/genetics , Staphylococcus aureus/genetics , Animals , Gene Expression Regulation, Bacterial/genetics , Humans , Macrophages/microbiology , Mice , Neutrophils/microbiology , Phagocytosis/genetics , Proteomics/methods , Reactive Oxygen Species/metabolism , Staphylococcal Infections/microbiology , Staphylococcus aureus/metabolism
17.
Cancer Cell ; 26(6): 923-937, 2014 Dec 08.
Article in English | MEDLINE | ID: mdl-25465800

ABSTRACT

Tumors constitute highly suppressive microenvironments in which infiltrating T cells are "exhausted" by inhibitory receptors such as PD-1. Here we identify TIGIT as a coinhibitory receptor that critically limits antitumor and other CD8(+) T cell-dependent chronic immune responses. TIGIT is highly expressed on human and murine tumor-infiltrating T cells, and, in models of both cancer and chronic viral infection, antibody coblockade of TIGIT and PD-L1 synergistically and specifically enhanced CD8(+) T cell effector function, resulting in significant tumor and viral clearance, respectively. This effect was abrogated by blockade of TIGIT's complementary costimulatory receptor, CD226, whose dimerization is disrupted upon direct interaction with TIGIT in cis. These results define a key role for TIGIT in inhibiting chronic CD8(+) T cell-dependent responses.


Subject(s)
Antigens, Differentiation, T-Lymphocyte/metabolism , CD8-Positive T-Lymphocytes/immunology , Lymphocytic Choriomeningitis/immunology , Neoplasms/immunology , Receptors, Immunologic/metabolism , Animals , CD8-Positive T-Lymphocytes/metabolism , CHO Cells , Cell Line, Tumor , Cricetulus , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Humans , Lymphocytic Choriomeningitis/pathology , Mice , Mice, Inbred BALB C , Neoplasms/pathology , Protein Multimerization , Rats
18.
J Infect Dis ; 209(10): 1542-50, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24286981

ABSTRACT

Little is known about the expression of methicillin-resistant Staphylococcus aureus (MRSA) genes during infection conditions. Here, we described the transcriptome of the clinical MRSA strain USA300 derived from human cutaneous abscesses, and compared it with USA300 bacteria derived from infected kidneys in a mouse model. Remarkable similarity between the transcriptomes allowed us to identify genes encoding multiple proteases and toxins, and iron- and peptide-transporter molecules, which are upregulated in both infections and are likely important for establishment of infection. We also showed that disruption of the global transcriptional regulators agr and sae prevents in vivo upregulation of many toxins and proteases, protecting mice from lethal infection dose, and hinting at the role of these transcriptional regulators in the pathology of MRSA infection.


Subject(s)
Gene Expression Regulation, Bacterial/physiology , Methicillin-Resistant Staphylococcus aureus/metabolism , Transcriptome , Abscess/microbiology , Animals , Humans , Methicillin-Resistant Staphylococcus aureus/classification , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Mice , Protein Array Analysis , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , Skin Diseases, Bacterial/microbiology , Virulence
19.
Nat Immunol ; 15(2): 161-7, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24362890

ABSTRACT

CD11b(+) dendritic cells (DCs) seem to be specialized for presenting antigens via major histocompatibility (MHC) class II complexes to stimulate helper T cells, but the genetic and regulatory basis for this is not established. Conditional deletion of Irf4 resulted in loss of CD11b(+) DCs, impaired formation of peptide-MHC class II complexes and defective priming of helper T cells but not of cytotoxic T lymphocyte (CTL) responses. Gene expression and chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) analyses delineated an IRF4-dependent regulatory module that programs enhanced MHC class II antigen presentation. Expression of the transcription factor IRF4 but not of IRF8 restored the ability of IRF4-deficient DCs to efficiently process and present antigen to MHC class II-restricted T cells and promote helper T cell responses. We propose that the evolutionary divergence of IRF4 and IRF8 facilitated the specialization of DC subsets for distinct modes of antigen presentation and priming of helper T cell versus CTL responses.


Subject(s)
Antigen Presentation/genetics , Dendritic Cells/immunology , Histocompatibility Antigens Class II/immunology , Interferon Regulatory Factors/metabolism , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Cell Differentiation/genetics , Cell Differentiation/immunology , Cells, Cultured , Gene Expression Profiling , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Histocompatibility Antigens Class II/genetics , Interferon Regulatory Factors/genetics , Lymphocyte Activation/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Binding/genetics , Transgenes/genetics
20.
Cell Host Microbe ; 14(1): 93-103, 2013 Jul 17.
Article in English | MEDLINE | ID: mdl-23870317

ABSTRACT

Recent advances enabling the cloning of human immunoglobulin G genes have proven effective for discovering monoclonal antibodies with therapeutic potential. However, these antibody-discovery methods are often arduous and identify only a few candidates from numerous antibody-secreting plasma cells or plasmablasts. We describe an in vivo enrichment technique that identifies broadly neutralizing human antibodies with high frequency. For this technique, human peripheral blood mononuclear cells from vaccinated donors are activated and enriched in an antigen-specific manner for the production of numerous antigen-specific plasmablasts. Using this technology, we identified four broadly neutralizing influenza A antibodies by screening only 840 human antibodies. Two of these antibodies neutralize every influenza A human isolate tested and perform better than the current anti-influenza A therapeutic, oseltamivir, in treating severe influenza infection in mice and ferrets. Furthermore, these antibodies elicit robust in vivo synergism when combined with oseltamivir, thus highlighting treatment strategies that could benefit influenza-infected patients.


Subject(s)
Antibodies, Viral/immunology , Influenza A virus/immunology , Influenza, Human/drug therapy , Neutralization Tests/methods , Plasma Cells/immunology , Animals , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , Antibodies, Viral/therapeutic use , Female , Ferrets , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Immunoglobulin G/therapeutic use , Influenza A virus/drug effects , Influenza, Human/genetics , Influenza, Human/immunology , Influenza, Human/virology , Male , Mice , Mice, Inbred DBA
SELECTION OF CITATIONS
SEARCH DETAIL
...