Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 11(1): e2304837, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37985882

ABSTRACT

Emergent inhomogeneous electronic phases in metallic quantum systems are crucial for understanding high-Tc superconductivity and other novel quantum states. In particular, spin droplets introduced by nonmagnetic dopants in quantum-critical superconductors (QCSs) can lead to a novel magnetic state in superconducting phases. However, the role of disorders caused by nonmagnetic dopants in quantum-critical regimes and their precise relation with superconductivity remain unclear. Here, the systematic evolution of a strong correlation between superconductive intertwined electronic phases and antiferromagnetism in Cd-doped CeCoIn5 is presented by measuring current-voltage characteristics under an external pressure. In the low-pressure coexisting regime where antiferromagnetic (AFM) and superconducting (SC) orders coexist, the critical current (Ic ) is gradually suppressed by the increasing magnetic field, as in conventional type-II superconductors. At pressures higher than the critical pressure where the AFM order disappears, Ic remarkably shows a sudden spike near the irreversible magnetic field. In addition, at high pressures far from the critical pressure point, the peak effect is not suppressed, but remains robust over the whole superconducting region. These results indicate that magnetic islands are protected around dopant sites despite being suppressed by the increasingly correlated effects under pressure, providing a new perspective on the role of quenched disorders in QCSs.

2.
Nat Commun ; 14(1): 7341, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37957188

ABSTRACT

The nature of charge degrees-of-freedom distinguishes scenarios for interpreting the character of a second order magnetic transition at zero temperature, that is, a magnetic quantum critical point (QCP). Heavy-fermion systems are prototypes of this paradigm, and in those, the relevant question is where, relative to a magnetic QCP, does the Kondo effect delocalize their f-electron degrees-of-freedom. Herein, we use pressure-dependent Hall measurements to identify a finite-temperature scale Eloc that signals a crossover from f-localized to f-delocalized character. As a function of pressure, Eloc(P) extrapolates smoothly to zero temperature at the antiferromagnetic QCP of CeRhIn5 where its Fermi surface reconstructs, hallmarks of Kondo-breakdown criticality that generates critical magnetic and charge fluctuations. In 4.4% Sn-doped CeRhIn5, however, Eloc(P) extrapolates into its magnetically ordered phase and is decoupled from the pressure-induced magnetic QCP, which implies a spin-density-wave (SDW) type of criticality that produces only critical fluctuations of the SDW order parameter. Our results demonstrate the importance of experimentally determining Eloc to characterize quantum criticality and the associated consequences for understanding the pairing mechanism of superconductivity that reaches a maximum Tc in both materials at their respective magnetic QCP.

3.
Small ; 19(41): e2303176, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37312400

ABSTRACT

The magnetic anisotropy of low-dimensional Mott systems exhibits unexpected magnetotransport behavior useful for spin-based quantum electronics. Yet, the anisotropy of natural materials is inherently determined by the crystal structure, highly limiting its engineering. The magnetic anisotropy modulation near a digitized dimensional Mott boundary in artificial superlattices composed of a correlated magnetic monolayer SrRuO3 and nonmagnetic SrTiO3 , is demonstrated. The magnetic anisotropy is initially engineered by modulating the interlayer coupling strength between the magnetic monolayers. Interestingly, when the interlayer coupling strength is maximized, a nearly degenerate state is realized, in which the anisotropic magnetotransport is strongly influenced by both the thermal and magnetic energy scales. The results offer a new digitized control for magnetic anisotropy in low-dimensional Mott systems, inspiring promising integration of Mottronics and spintronics.

4.
Nanoscale ; 15(26): 11290-11298, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37357947

ABSTRACT

FexGeTe2 (x = 3, 4, and 5) systems, two-dimensional (2D) van der Waals (vdW) ferromagnetic (FM) metals with high Curie temperatures (TC), have been intensively studied to realize all-2D spintronic devices. Recently, an intrinsic FM material Fe3GaTe2 with high TC (350-380 K) has been reported. As substitutional doping changes the magnetic properties of vdW magnets, it can be a powerful means for engineering the properties of magnetic materials. Here, the coercive field (Hc) is substantially enhanced by substituting Ni for Fe in (Fe1-xNix)3GaTe2 crystals. The introduction of a Ni dopant with x = 0.03 can enhance the value of Hc up to ∼200% while maintaining the FM state at room temperature. As the doping level increases, TC decreases, whereas Hc increases up to 7 kOe at x = 0.12, which is the highest Hc reported so far. The FM characteristic is almost suppressed at x = 0.68 and a spin glass state appears. The enhancement of Hc resulting from Ni doping can be attributed to domain pinning induced by substitutional Ni atoms, as evidenced by the decrease in magnetic anisotropy energy in the crystals upon Ni doping. Our findings provide a highly effective way to control the Hc of the 2D vdW FM metal Fe3GaTe2 for the realization of Fe3GaTe2 based room-temperature operating spintronic devices.

5.
Phys Rev Lett ; 130(7): 076301, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36867818

ABSTRACT

The origin of the partial suppression of the electronic density states in the enigmatic pseudogap behavior, which is at the core of understanding high-T_{c} superconductivity, has been hotly contested as either a hallmark of preformed Cooper pairs or an incipient order of competing interactions nearby. Here, we report the quasiparticle scattering spectroscopy of the quantum critical superconductor CeCoIn_{5}, where a pseudogap with energy Δ_{g} was manifested as a dip in the differential conductance (dI/dV) below the characteristic temperature of T_{g}. When subjected to external pressure, T_{g} and Δ_{g} gradually increase, following the trend of increase in quantum entangled hybridization between the Ce 4f moment and conduction electrons. On the other hand, the superconducting (SC) energy gap and its phase transition temperature shows a maximum, revealing a dome shape under pressure. The disparate dependence on pressure between the two quantum states shows that the pseudogap is less likely involved in the formation of SC Cooper pairs, but rather is controlled by Kondo hybridization, indicating that a novel type of pseudogap is realized in CeCoIn_{5}.

6.
J Phys Condens Matter ; 34(45)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36055248

ABSTRACT

We report the growth of CeIrIn5thin films with different crystal orientations on a MgF2(001) substrate using pulsed laser deposition technique. X-ray diffraction analysis showed that the thin films were either mainlya-axis-oriented (TF1) or a combination ofa- andc-axis-oriented (TF2). The characteristic features of heavy-fermion superconductors, i.e. Kondo coherence and superconductivity, were clearly observed, where the superconducting transition temperature (Tc) and Kondo coherence temperature (Tcoh) are 0.58 K and 41 K for TF1 and 0.52 K and 37 K for TF2, respectively. The temperature dependencies of the upper critical field (Hc2) of both thin films and the CeIrIn5single crystal revealed a scaling behavior, indicating that the nature of unconventional superconductivity has not been changed in the thin film. The successful synthesis of CeIrIn5thin films is expected to open a new avenue for novel quantum phases that may have been difficult to explore in the bulk crystalline samples.

7.
Nat Commun ; 13(1): 3373, 2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35690593

ABSTRACT

High-entropy alloy (HEA) superconductors-a new class of functional materials-can be utilized stably under extreme conditions, such as in space environments, owing to their high mechanical hardness and excellent irradiation tolerance. However, the feasibility of practical applications of HEA superconductors has not yet been demonstrated because the critical current density (Jc) for HEA superconductors has not yet been adequately characterized. Here, we report the fabrication of high-quality superconducting (SC) thin films of Ta-Nb-Hf-Zr-Ti HEAs via a pulsed laser deposition. The thin films exhibit a large Jc of >1 MA cm-2 at 4.2 K and are therefore favorable for SC devices as well as large-scale applications. In addition, they show extremely robust superconductivity to irradiation-induced disorder controlled by the dose of Kr-ion irradiation. The superconductivity of the HEA films is more than 1000 times more resistant to displacement damage than that of other promising superconductors with technological applications, such as MgB2, Nb3Sn, Fe-based superconductors, and high-Tc cuprate superconductors. These results demonstrate that HEA superconductors have considerable potential for use under extreme conditions, such as in aerospace applications, nuclear fusion reactors, and high-field SC magnets.

8.
Nanotechnology ; 32(32)2021 May 17.
Article in English | MEDLINE | ID: mdl-33845468

ABSTRACT

Two-dimensional (2D) molybdenum disulphide (MoS2) transition metal dichalcogenides (TMDs) have great potential for use in optical and electronic device applications; however, the performance of MoS2is limited by its crystal quality, which serves as a measure of the defects and grain boundaries in the grown material. Therefore, the high-quality growth of MoS2crystals continues to be a critical issue. In this context, we propose the formation of high-quality MoS2crystals via the flux method. The resulting electrical properties demonstrate the significant impact of crystal morphology on the performance of MoS2field-effect transistors. MoS2made with a relatively higher concentration of sulphur (a molar ratio of 2.2) and at a cooling rate of 2.5 °C h-1yielded good quality and optimally sized crystals. The room-temperature and low-temperature (77 K) electrical transport properties of MoS2field-effect transistors (FETs) were studied in detail, with and without the use of a hexagonal boron nitride (h-BN) dielectric to address the mobility degradation issue due to scattering at the SiO2/2D material interface. A maximum field-effect mobility of 113 cm2V-1s-1was achieved at 77 K for the MoS2/h-BN FET following high-quality crystal formation by the flux method. Our results confirm the achievement of large-scale high-quality crystal growth with reduced defect density using the flux method and are key to achieving higher mobility in MoS2FET devices in parallel with commercially accessible MoS2crystals.

9.
J Phys Condens Matter ; 33(6): 065604, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33108765

ABSTRACT

CeIn3, a prototypical antiferromagnet, is an ideal candidate for investigating the relationship between magnetism and superconductivity, as superconductivity is induced as the magnetic transition temperature (T N) is lowered to 0 K by applying pressure. When La is substituted for Ce, T N of CeIn3 decreases to 0 K owing to the Ce dilution effects, thereby providing an alternative route to the zero-temperature quantum phase transition. In this study, we report a combinatorial approach to gain access to the critical point by applying external pressure to 20% La-doped CeIn3. Electrical resistivity measurements of La0.2Ce0.8In3 show that the T N of 8.4 K at 1 bar is gradually suppressed under pressure and can be extrapolated to 0 K at approximately 2.47 GPa, thereby showing a similar pressure dependence of T N as shown by undoped CeIn3. The kink-like feature in resistivity at T N of CeIn3 changed to an obvious jump in the doped compound for pressures higher than 1.64 GPa, indicating depletion in the carrier density due to a gap opening. AC calorimetry measurements under applied pressure show that the size of the specific heat jump at T N decreases with increasing pressure, but any signatures associated with the gap opening are not obvious, suggesting that the pressure-induced kink-to-jump change at T N in the resistivity is not a phase transition, but rather a gradual crossover. The low-temperature specific heat divided by temperature, C/T, does not strongly diverge with decreasing temperature, but is almost saturated near the projected quantum critical point, which can be attributed to a weak enhancement in the effective mass up to 2.6 GPa.

12.
Nano Lett ; 20(5): 3978-3985, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32330042

ABSTRACT

The recent discovery of magnetic van der Waals (vdW) materials provides a platform to answer fundamental questions on the two-dimensional (2D) limit of magnetic phenomena and applications. An important question in magnetism is the ultimate limit of the antiferromagnetic layer thickness in ferromagnetic (FM)/antiferromagnetic (AFM) heterostructures to observe the exchange bias (EB) effect, of which origin has been subject to a long-standing debate. Here, we report that the EB effect is maintained down to the atomic bilayer of AFM in the FM (Fe3GeTe2)/AFM (CrPS4) vdW heterostructure, but it vanishes at the single-layer limit. Given that CrPS4 is of A-type AFM and, thus, the bilayer is the smallest unit to form an AFM, this result clearly demonstrates the 2D limit of EB; only one unit of AFM ordering is sufficient for a finite EB effect. Moreover, the semiconducting property of AFM CrPS4 allows us to electrically control the exchange bias, providing an energy-efficient knob for spintronic devices.

13.
Nanotechnology ; 31(8): 085705, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31675737

ABSTRACT

Deoxyribonucleic acid (DNA) doped with transition metal ions shows great versatility for molecular-based biosensors and bioelectronics. Methodologies for developing DNA lattices (formed by synthetic double-crossover tiles) and DNA layers (used by natural salmon) doped with vanadium ions (V3+), as well as an understanding of the physical characteristics of V3+-doped DNA nanostructures, are essential in practical applications in interdisciplinary research fields. Here, DNA lattices and layers doped with V3+ are constructed through substrate-assisted growth and drop-casting methods. In addition, enhanced physical characteristics such as the band gap energy, work function, dielectric constant, and susceptibility of V3+-doped DNA nanostructures with varying V3+ concentration ([V 3+ ]) are investigated. The critical concentration ([V 3+ ]C ) at a given amount of DNA was predicted based on an analysis of the phase transition of DNA lattices from crystalline to amorphous with specific [V 3+ ]. Generally, the [V 3+ ]C provided crucial information on the structural stability and extremum physical characteristics of V3+-doped DNA nanostructures due to the optimum incorporation of V3+ into DNA. We obtained the optical absorption spectra for energy band gap estimation; Raman spectra for identifying the preferential coordination sites of V3+ in DNA; x-ray photoelectron spectra to examine the chemical state, chemical composition, and functional groups; and ultraviolet photoelectron spectra to estimate the work function. In addition, we addressed the electrical properties (i.e. current, capacitance, dielectric constant, and storage energy) and magnetic properties (magnetic field-dependent and temperature-dependent magnetizations and susceptibility) of DNA layers in the presence of V3+. The development of biocompatible materials with specific optical, electrical, and magnetic properties is required for future applications because they must have designated functionality, high efficiency, and affordability.

14.
Nat Commun ; 10(1): 3607, 2019 Aug 06.
Article in English | MEDLINE | ID: mdl-31383858

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Sci Rep ; 9(1): 3315, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30824810

ABSTRACT

Although giant proximity effect (GPE) can shed important information on understanding superconducting pairing mechanisms and superconducting electronics, reports on the GPE are few because the fabrication of the junctions with GPE is technologically difficult. Here, we report a GPE in the single-crystalline MgB2 bilayers (S'/S), where the S' is the damaged MgB2 layer by cobalt (Co)-ion irradiation and the S is the undamaged MgB2 layer. Superconducting properties of the S' is remarkably degraded by the irradiation, whereas those of the S is uninfluenced by the irradiation. The degraded superconductivity in the S' is fully recovered by increasing the thickness of undamaged MgB2 layer S despite almost ten times larger thickness ~ 95 nm of S' than the superconducting coherence length ξab(0) ~ 8.5 nm of the S, indicating a presence of GPE in the S'/S MgB2 bilayers. A diffusion of electrons in the S' into the S can reduce a pair breaking scattering in the S', and the similar electronic structures of S' and S layers and a finite attractive electron-electron interaction in the S' are thought to be origins of unpredicted GPE between the same superconducting materials. Both upper critical field (µ0Hc2) and in-field critical current density (Jc) of S'/S bilayers show a significant enhancement, representing a strong correlation between S' and S. These discoveries provide the blue print to the design of the superconducting multilayers for fundamental researches on the mechanism of the GPE as well as their technological applications.

16.
Sci Rep ; 8(1): 13937, 2018 Sep 17.
Article in English | MEDLINE | ID: mdl-30224789

ABSTRACT

The recent observation of extremely large magnetoresistance (MR) in the transition-metal dichalcogenide MoTe2 has attracted considerable interest due to its potential technological applications as well as its relationship with novel electronic states predicted for a candidate type-II Weyl semimetal. In order to understand the origin of the MR, the electronic structure of MoTe2-x (x = 0.08) is systematically tuned by application of pressure and probed via its Hall and longitudinal conductivities. With increasing pressure, a monoclinic-to-orthorhombic (1 T' to Td) structural phase transition temperature (T*) gradually decreases from 210 K at 1 bar to 58 K at 1.1 GPa, and there is no anomaly associated with the phase transition at 1.4 GPa, indicating that a T = 0 K quantum phase transition occurs at a critical pressure (Pc) between 1.1 and 1.4 GPa. The large MR observed at 1 bar is suppressed with increasing pressure and is almost saturated at 100% for P > Pc. The dependence on magnetic field of the Hall and longitudinal conductivities of MoTe2-x shows that a pair of electron and hole bands are important in the low-pressure Td phase, while another pair of electron and hole bands are additionally required in the high-pressure 1 T' phase. The MR peaks at a characteristic hole-to-electron concentration ratio (nc) and is sharply suppressed when the ratio deviates from nc within the Td phase. These results establish the comprehensive temperature-pressure phase diagram of MoTe2-x and underscore that its MR originates from balanced electron-hole carrier concentrations.

17.
Sci Rep ; 8(1): 8556, 2018 Jun 04.
Article in English | MEDLINE | ID: mdl-29867126

ABSTRACT

We investigate thermal fluctuations in terms of diamagnetism and magnetotransport in superconducting NaFe1-xCo x As single crystals with different doping levels. Results show that in the case of optimal doped and lightly overdoped (x = 0.03, 0.05) crystals the analysis in the critical as well as in the Gaussian fluctuation regions is consistent with the Ginzburg-Landau 3D fluctuation theory. However, in the case of strongly overdoped samples (x ≥ 0.07) the Ullah-Dorsey scaling of the fluctuation induced magnetoconductivity in the critical region confirms that thermal fluctuations exhibit a 3D anisotropic nature only in a narrow temperature region around T c (H). This is consistent with the fact that in these samples the fluctuation effects in the Gaussian region above Tc may be described by the Lawrence-Doniach approach. Our results indicate that the anisotropy of these materials increases significantly with the doping level.

18.
Nat Commun ; 9(1): 1554, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29674662

ABSTRACT

Two-dimensional van der Waals materials have demonstrated fascinating optical and electrical characteristics. However, reports on magnetic properties and spintronic applications of van der Waals materials are scarce by comparison. Here, we report anomalous Hall effect measurements on single crystalline metallic Fe3GeTe2 nanoflakes with different thicknesses. These nanoflakes exhibit a single hard magnetic phase with a near square-shaped magnetic loop, large coercivity (up to 550 mT at 2 K), a Curie temperature near 200 K and strong perpendicular magnetic anisotropy. Using criticality analysis, the coupling length between van der Waals atomic layers in Fe3GeTe2 is estimated to be ~5 van der Waals layers. Furthermore, the hard magnetic behaviour of Fe3GeTe2 can be well described by a proposed model. The magnetic properties of Fe3GeTe2 highlight its potential for integration into van der Waals magnetic heterostructures, paving the way for spintronic research and applications based on these devices.

19.
J Phys Condens Matter ; 30(16): 165401, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29528301

ABSTRACT

Low-dimensional electronic systems with confined electronic wave functions have attracted interest due to their propensity toward novel quantum phases and their use in wide range of nanotechnologies. The newly discovered chalcogenide Nb2PdS5 possesses a quasi-one-dimensional electronic structure and becomes superconducting. Here, we report spectroscopic evidence for two-band superconductivity, where soft point-contact spectroscopic measurements in the superconducting (SC) state reveal Andreev reflection in the differential conductance G. Multiple peaks in G are observed at 1.8 K and explained by the two-band Blonder-Tinkham-Klapwijk model with two gaps Δ1 = 0.61 meV and Δ2 = 1.20 meV. The progressive evolution of G with temperature and magnetic field corroborates the multiple nature of the SC gaps.

20.
Nanoscale ; 10(9): 4377-4384, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29450417

ABSTRACT

Transition metal oxide thin films show versatile electric, magnetic, and thermal properties which can be tailored by deliberately introducing macroscopic grain boundaries via polycrystalline solids. In this study, we focus on the modification of magnetic and thermal transport properties by fabricating single- and polycrystalline epitaxial SrRuO3 thin films using pulsed laser epitaxy. Using the epitaxial stabilization technique with an atomically flat polycrystalline SrTiO3 substrate, an epitaxial polycrystalline SrRuO3 thin film with the crystalline quality of each grain comparable to that of its single-crystalline counterpart is realized. In particular, alleviated compressive strain near the grain boundaries due to coalescence is evidenced structurally, which induced the enhancement of ferromagnetic ordering of the polycrystalline epitaxial thin film. The structural variations associated with the grain boundaries further reduce the thermal conductivity without deteriorating the electronic transport, and lead to an enhanced thermoelectric efficiency in the epitaxial polycrystalline thin films, compared with their single-crystalline counterpart.

SELECTION OF CITATIONS
SEARCH DETAIL
...