Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Ecol Appl ; : e2968, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38562000

ABSTRACT

Understanding how habitat attributes (e.g., patch area and sizes, connectivity) control recruitment and how this is modified by processes operating at larger spatial scales is fundamental to understanding population sustainability and developing successful long-term restoration strategies for marine foundation species-including for globally threatened reef-forming oysters. In two experiments, we assessed the recruitment and energy reserves of oyster recruits onto remnant reefs of the oyster Saccostrea glomerata in estuaries spanning 550 km of coastline in southeastern Australia. In the first experiment, we determined whether recruitment of oysters to settlement plates in three estuaries was correlated with reef attributes within patches (distances to patch edges and surface elevation), whole-patch attributes (shape and size of patches), and landscape attributes (connectivity). We also determined whether environmental factors (e.g., sedimentation and water temperature) explained the differences among recruitment plates. We also tested whether differences in energy reserves of recruits could explain the differences between two of the estuaries (one high- and one low-sedimentation estuary). In the second experiment, across six estuaries (three with nominally high and three with nominally low sedimentation rates), we tested the hypothesis that, at the estuary scale, recruitment and survival were negatively correlated to sedimentation. Overall, total oyster recruitment varied mostly at the scale of estuaries rather than with reef attributes and was negatively correlated with sedimentation. Percentage recruit survival was, however, similar among estuaries, although energy reserves and condition of recruits were lower at a high- compared to a low-sediment estuary. Within each estuary, total oyster recruitment increased with patch area and decreased with increasing tidal height. Our results showed that differences among estuaries have the largest influence on oyster recruitment and recruit health and this may be explained by environmental processes operating at the same scale. While survival was high across all estuaries, growth and reproduction of oysters on remnant reefs may be affected by sublethal effects on the health of recruits in high-sediment estuaries. Thus, restoration programs should consider lethal and sublethal effects of whole-estuary environmental processes when selecting sites and include environmental mitigation actions to maximize recruitment success.

2.
Mar Pollut Bull ; 198: 115788, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38056289

ABSTRACT

Climate change is acidifying and warming our oceans, at an unprecedented rate posing a challenge for marine invertebrates vital across the globe for ecological services and food security. Here we show it is possible for resilience to climate change in an ecologically and economically significant oyster without detrimental effects to the energy budget. We exposed 24 pair-mated genetically distinct families of the Sydney rock oyster, Saccostrea glomerata to ocean acidification and warming for 4w and measured their resilience. Resilience was identified as the capacity to defend their acid-base balance without a loss of energy available for Scope for Growth (SFG). Of the 24 families, 13 were better able to defend their acid-base balance while eight had no loss of energy availability with a positive SFG. This study has found oyster families with reslience against climate change without a loss of SFG, is an essential mitigation strategy, in a critical mollusc.


Subject(s)
Ostreidae , Resilience, Psychological , Animals , Seawater , Hydrogen-Ion Concentration , Climate Change , Seafood
3.
Anim Microbiome ; 4(1): 32, 2022 May 19.
Article in English | MEDLINE | ID: mdl-35590396

ABSTRACT

BACKGROUND: The term holobiont is widely accepted to describe animal hosts and their associated microorganisms. The genomes of all that the holobiont encompasses, are termed the hologenome and it has been proposed as a unit of selection in evolution. To demonstrate that natural selection acts on the hologenome, a significant portion of the associated microbial genomes should be transferred between generations. Using the Sydney Rock Oyster (Saccostrea glomerata) as a model, we tested if the microbes of this broadcast spawning species could be passed down to the next generation by conducting single parent crosses and tracking the microbiome from parent to offspring and throughout early larval stages using 16S rRNA gene amplicon sequencing. From each cross, we sampled adult tissues (mantle, gill, stomach, gonad, eggs or sperm), larvae (D-veliger, umbo, eyed pediveliger, and spat), and the surrounding environment (water and algae feed) for microbial community analysis. RESULTS: We found that each larval stage has a distinct microbiome that is partially influenced by their parental microbiome, particularly the maternal egg microbiome. We also demonstrate the presence of core microbes that are consistent across all families, persist throughout early life stages (from eggs to spat), and are not detected in the microbiomes of the surrounding environment. In addition to the core microbiomes that span all life cycle stages, there is also evidence of environmentally acquired microbial communities, with earlier larval stages (D-veliger and umbo), more influenced by seawater microbiomes, and later larval stages (eyed pediveliger and spat) dominated by microbial members that are specific to oysters and not detected in the surrounding environment. CONCLUSION: Our study characterized the succession of oyster larvae microbiomes from gametes to spat and tracked selected members that persisted across multiple life stages. Overall our findings suggest that both horizontal and vertical transmission routes are possible for the complex microbial communities associated with a broadcast spawning marine invertebrate. We demonstrate that not all members of oyster-associated microbiomes are governed by the same ecological dynamics, which is critical for determining what constitutes a hologenome.

4.
Mar Pollut Bull ; 173(Pt B): 113113, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34768191

ABSTRACT

Climate change is expected to cause significant changes to rocky shore diversity. This study used outdoor mesocosms to test the predictions that warming and ocean acidification will alter the responses of native Trichomya hirsuta and introduced Mytilus galloprovincialis mussels, and their associated communities of infauna. Experiments consisted of orthogonal combinations of temperature (ambient 22 °C or elevated 25 °C), pCO2 (ambient 400 µatm or elevated 1000 µatm), mussel species (T. hirsuta or M. galloprovincialis), and mussel configuration (native, introduced, or both), with n = 3 replicates. Elevated pCO2 reduced the growth of T. hirsuta but not that of M. galloprovincialis, and warming and pCO2 influenced the infauna that colonised both species of mussels. There was a reduction in infaunal molluscs and an increase in polychaetes; there was, however, no effect on crustaceans. Results from this study suggest that climate-driven changes from one mussel species to another can significantly influence infaunal communities.


Subject(s)
Climate Change , Mytilus , Animals , Hydrogen-Ion Concentration , Seawater , Shellfish
5.
Sci Rep ; 11(1): 21112, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34702926

ABSTRACT

Microbiomes can both influence and be influenced by metabolism, but this relationship remains unexplored for invertebrates. We examined the relationship between microbiome and metabolism in response to climate change using oysters as a model marine invertebrate. Oysters form economies and ecosystems across the globe, yet are vulnerable to climate change. Nine genetic lineages of the oyster Saccostrea glomerata were exposed to ambient and elevated temperature and PCO2 treatments. The metabolic rate (MR) and metabolic by-products of extracellular pH and CO2 were measured. The oyster-associated bacterial community in haemolymph was characterised using 16 s rRNA gene sequencing. We found a significant negative relationship between MR and bacterial richness. Bacterial community composition was also significantly influenced by MR, extracellular CO2 and extracellular pH. The effects of extracellular CO2 depended on genotype, and the effects of extracellular pH depended on CO2 and temperature treatments. Changes in MR aligned with a shift in the relative abundance of 152 Amplicon Sequencing Variants (ASVs), with 113 negatively correlated with MR. Some spirochaete ASVs showed positive relationships with MR. We have identified a clear relationship between host metabolism and the microbiome in oysters. Altering this relationship will likely have consequences for the 12 billion USD oyster economy.


Subject(s)
Bacteria/classification , Hemolymph/microbiology , Microbiota , Ostreidae/metabolism , Ostreidae/microbiology , Animals , Bacteria/genetics , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics
6.
FEMS Microbiol Ecol ; 97(8)2021 07 14.
Article in English | MEDLINE | ID: mdl-34190992

ABSTRACT

Oyster microbiomes are integral to healthy function and can be altered by climate change conditions. Genetic variation among oysters is known to influence the response of oysters to climate change and may ameliorate any adverse effects on oyster microbiome; however, this remains unstudied. Nine full-sibling selected breeding lines of the Sydney rock oyster (Saccostrea glomerata) were exposed to predicted warming (ambient = 24°C, elevated = 28°C) and ocean acidification (ambient pCO2 = 400, elevated pCO2 = 1000 µatm) for 4 weeks. The haemolymph bacterial microbiome was characterized using 16S rRNA (V3-V4) gene sequencing and varied among oyster lines in the control (ambient pCO2, 24°C) treatment. Microbiomes were also altered by climate change dependent on oyster lines. Bacterial α-diversity increased in response to elevated pCO2 in two selected lines, while bacterial ß-diversity was significantly altered by combinations of elevated pCO2 and temperature in four selected lines. Climate change treatments caused shifts in the abundance of multiple amplicon sequence variants driving change in the microbiome of some selected lines. We show that oyster genetic background may influence the Sydney rock oyster haemolymph microbiome under climate change and that future assisted evolution breeding programs to enhance resilience should consider the oyster microbiome.


Subject(s)
Microbiota , Ostreidae , Animals , Carbon Dioxide/analysis , Hydrogen-Ion Concentration , Oceans and Seas , RNA, Ribosomal, 16S/genetics , Seawater
7.
PLoS Biol ; 19(6): e3001282, 2021 06.
Article in English | MEDLINE | ID: mdl-34129646

ABSTRACT

Success and impact metrics in science are based on a system that perpetuates sexist and racist "rewards" by prioritizing citations and impact factors. These metrics are flawed and biased against already marginalized groups and fail to accurately capture the breadth of individuals' meaningful scientific impacts. We advocate shifting this outdated value system to advance science through principles of justice, equity, diversity, and inclusion. We outline pathways for a paradigm shift in scientific values based on multidimensional mentorship and promoting mentee well-being. These actions will require collective efforts supported by academic leaders and administrators to drive essential systemic change.


Subject(s)
Reward , Science , Bias , Cultural Diversity , Humans , Mentoring
8.
Mar Pollut Bull ; 168: 112441, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33991985

ABSTRACT

Climate change will increase energetic demands on marine invertebrate larvae and make planktonic food more unpredictable. This study determined the impact of ocean acidification on larval energetics of the oysters Saccostrea glomerata and Crassostrea gigas. Larvae of both oysters were reared until the 9-day-old, umbonate stage under orthogonal combinations of ambient and elevated p CO 2 (340 and 856 µatm) and food was limited. Elevated p CO 2 reduced the survival, size and larval energetics, larvae of C. gigas being more resilient than S. glomerata. When larvae were fed, elevated p CO 2 reduced lipid levels across all lipid classes. When larvae were unfed elevated p CO 2 resulted in increased lipid levels and mortality. Ocean acidification and food will interact to limit larval energetics. Larvae of S. glomerata will be more impacted than C. gigas and this is of concern given their aquacultural status and ecological function.


Subject(s)
Crassostrea , Seawater , Animals , Carbon Dioxide/analysis , Hydrogen-Ion Concentration , Larva , Lipids , Oceans and Seas
9.
J Exp Biol ; 224(12)2021 06 15.
Article in English | MEDLINE | ID: mdl-33785501

ABSTRACT

Transgenerational plasticity (TGP) has been identified as a critical mechanism of acclimation that may buffer marine organisms against climate change, yet whether the TGP response of marine organisms is altered depending on their habitat is unknown. Many marine organisms are found in intertidal zones where they experience episodes of emersion (air exposure) daily as the tide rises and recedes. During episodes of emersion, the accumulation of metabolic carbon dioxide (CO2) leads to hypercapnia for many species. How this metabolic hypercapnia impacts the TGP response of marine organisms to climate change is unknown as all previous transgenerational studies have been done under subtidal conditions, where parents are constantly immersed. Here, we assess the capacity of the ecologically and economically important oyster, Saccostrea glomerata, to acclimate to elevated CO2 dependent on habitat, across its vertical distribution, from the subtidal to intertidal zone. Tidal habitat altered both the existing tolerance and transgenerational response of S. glomerata to elevated CO2. Overall, larvae from parents conditioned in an intertidal habitat had a greater existing tolerance to elevated CO2 than larvae from parents conditioned in a subtidal habitat, but had a lower capacity for beneficial TGP following parental exposure to elevated CO2. Our results suggest that the TGP responses of marine species will not be uniform across their distribution and highlights the need to consider the habitat of a species when assessing TGP responses to climate change stressors.


Subject(s)
Ostreidae , Seawater , Animals , Aquatic Organisms , Carbon Dioxide , Climate Change , Ecosystem , Hydrogen-Ion Concentration
10.
Mar Pollut Bull ; 164: 111991, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33485019

ABSTRACT

The wellbeing of marine organisms is connected to their microbiome. Oysters are a vital food source and provide ecological services, yet little is known about how climate change such as ocean acidification and warming will affect their microbiome. We exposed the Sydney rock oyster, Saccostrea glomerata, to orthogonal combinations of temperature (24, 28 °C) and pCO2 (400 and 1000 µatm) for eight weeks and used amplicon sequencing of the 16S rRNA (V3-V4) gene to characterise the bacterial community in haemolymph. Overall, elevated pCO2 and temperature interacted to alter the microbiome of oysters, with a clear partitioning of treatments in CAP ordinations. Elevated pCO2 was the strongest driver of species diversity and richness and elevated temperature also increased species richness. Climate change, both ocean acidification and warming, will alter the microbiome of S. glomerata which may increase the susceptibility of oysters to disease.


Subject(s)
Microbiota , Ostreidae , Animals , Carbon Dioxide , Climate Change , Hydrogen-Ion Concentration , Ostreidae/genetics , RNA, Ribosomal, 16S , Seawater
11.
Mar Pollut Bull ; 158: 111389, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32568086

ABSTRACT

Heatwaves are an increasing threat to organisms across the globe. Marine and atmospheric heatwaves are predicted to impact sessile intertidal marine organisms, especially when exposed at low tide and unable to seek refuge. The study aimed to determine whether a simulated atmospheric heatwave will alter the survival of selectively bred families of Sydney rock oysters (Saccostrea glomerata), and whether survival is dependent on morphological and physiological traits. The survival of S. glomerata families to a simulated atmospheric heatwave varied from 25 to 60% and was not correlated with morphology or physiology. Survival may depend on the presence of genotypes that translate into molecular defenses such as heat-shock proteins and inhibitor of apoptosis proteins that provide oysters with resilience. Understanding the responses among families of oysters to heatwaves is critical if we are to restore the ecological services of oyster reefs and sustain oyster aquaculture.


Subject(s)
Ostreidae , Animals , Aquaculture , Aquatic Organisms , Breeding
12.
Aquat Toxicol ; 203: 51-60, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30077126

ABSTRACT

It remains unknown how molluscs will respond to oceans which are increasingly predicted to be warmer, more acidic, and heavily polluted. Ocean acidification and trace metals will likely interact to increase the energy demands of marine organisms, especially oysters. This study tested the interactive effect of exposure to elevated pCO2 and copper on the energetic demands of the Sydney rock oyster (Saccostrea glomerata) during reproductive conditioning and determined whether there were any positive or negative effects on their offspring. Oysters were exposed to elevated pCO2 (1000 µatm) and elevated copper (Cu 50 µg L-1 [0.787 µM]) in an orthogonal design for eight weeks during reproductive conditioning. After eight weeks, energetic demands on oysters were measured including standard metabolic rate (SMR), nitrogen excretion, molar oxygen to nitrogen (O:N) ratio, and pHe of adult oysters as well as the size and total lipid content of their eggs. To determine egg viability, the gametes were collected and fertilised from adult oysters, the percentage of embryos that had reached the trochophore stage after 24 h was recorded. Elevated pCO2 caused a lower extracellular pH and there was a greater O:N ratio in adult oysters exposed to copper. While the two stressors did not interact to cause significant effects on adult physiology, they did interact to reduce the size and lipid content of eggs indicating that energy demand on adult oysters was greater when both elevated pCO2 and copper were combined. Despite the lower energy, there were no negative effects on early embryonic development. In conclusion, elevated pCO2 can interact with metals and cause greater energetic demands on oysters; in response oysters may lower maternal investment to offspring.


Subject(s)
Acids/toxicity , Aging/physiology , Copper/toxicity , Oceans and Seas , Ostreidae/physiology , Animals , Basal Metabolism/drug effects , Carbon Dioxide/chemistry , Embryonic Development/drug effects , Lipids/analysis , Ostreidae/drug effects , Ostreidae/embryology , Ovum/cytology , Ovum/drug effects , Seawater , Water Pollutants, Chemical/toxicity
13.
Mar Environ Res ; 135: 103-113, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29428529

ABSTRACT

Understanding mechanisms of intraspecific variation in resilience to environmental drivers is key to predict species' adaptive potential. Recent studies show a higher CO2 resilience of Sydney rock oysters selectively bred for increased growth and disease resistance ('selected oysters') compared to the wild population. We tested whether the higher resilience of selected oysters correlates with an increased ability to compensate for CO2-induced acid-base disturbances. After 7 weeks of exposure to elevated seawater PCO2 (1100 µatm), wild oysters had a lower extracellular pH (pHe = 7.54 ±â€¯0.02 (control) vs. 7.40 ±â€¯0.03 (elevated PCO2)) and increased hemolymph PCO2 whereas extracellular acid-base status of selected oysters remained unaffected. However, differing pHe values between oyster types were not linked to altered metabolic costs of major ion regulators (Na+/K+-ATPase, H+-ATPase and Na+/H+-exchanger) in gill and mantle tissues. Our findings suggest that selected oysters possess an increased systemic capacity to eliminate metabolic CO2, possibly through higher and energetically more efficient filtration rates and associated gas exchange. Thus, effective filtration and CO2 resilience might be positively correlated traits in oysters.


Subject(s)
Carbon Dioxide/toxicity , Environmental Monitoring , Ostreidae/physiology , Seawater/chemistry , Water Pollutants, Chemical/toxicity , Animals , Gills , Hydrogen-Ion Concentration , Oceans and Seas
14.
Proc Biol Sci ; 285(1872)2018 02 14.
Article in English | MEDLINE | ID: mdl-29445023

ABSTRACT

Whether sex determination of marine organisms can be altered by ocean acidification and warming during this century remains a significant, unanswered question. Here, we show that exposure of the protandric hermaphrodite oyster, Saccostrea glomerata to ocean acidification, but not warming, alters sex determination resulting in changes in sex ratios. After just one reproductive cycle there were 16% more females than males. The rate of gametogenesis, gonad area, fecundity, shell length, extracellular pH and survival decreased in response to ocean acidification. Warming as a sole stressor slightly increased the rate of gametogenesis, gonad area and fecundity, but this increase was masked by the impact of ocean acidification at a level predicted for this century. Alterations to sex determination, sex ratios and reproductive capacity will have flow on effects to reduce larval supply and population size of oysters and potentially other marine organisms.


Subject(s)
Carbon Dioxide/analysis , Ostreidae/physiology , Seawater/chemistry , Sex Determination Processes , Animals , Climate Change , Hot Temperature , Sex Ratio
15.
Mol Ecol ; 26(21): 5974-5988, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28833825

ABSTRACT

Some populations of marine organisms appear to have inherent tolerance or the capacity for acclimation to stressful environmental conditions, including those associated with climate change. Sydney rock oysters from the B2 breeding line exhibit resilience to ocean acidification (OA) at the physiological level. To understand the molecular basis of this physiological resilience, we analysed the gill transcriptome of B2 oysters that had been exposed to near-future projected ocean pH over two consecutive generations. Our results suggest that the distinctive performance of B2 oysters in the face of OA is mediated by the selective expression of genes involved in multiple cellular processes. Subsequent high-throughput qPCR revealed that some of these transcriptional changes are exclusive to B2 oysters and so may be associated with their resilience to OA. The intracellular processes mediated by the differentially abundant genes primarily involve control of the cell cycle and maintenance of cellular homeostasis. These changes may enable B2 oysters to prevent apoptosis resulting from oxidative damage or to alleviate the effects of apoptosis through regulation of the cell cycle. Comparative analysis of the OA conditioning effects across sequential generations supported the contention that B2 and wild-type oysters have different trajectories of changing gene expression and responding to OA. Our findings reveal the broad set of molecular processes underlying transgenerational conditioning and potential resilience to OA in a marine calcifier. Identifying the mechanisms of stress resilience can uncover the intracellular basis for these organisms to survive and thrive in a rapidly changing ocean.


Subject(s)
Acclimatization/genetics , Gene Expression Profiling , Ostreidae/genetics , Seawater/chemistry , Animals , Carbon Dioxide/chemistry , Climate Change , Gills , Hydrogen-Ion Concentration , New South Wales , Stress, Physiological , Transcriptome
16.
Mar Pollut Bull ; 122(1-2): 263-271, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28733041

ABSTRACT

Coastal and estuarine environments are characterised by acute changes in temperature and salinity. Organisms living within these environments are adapted to withstand such changes, yet near-future ocean acidification (OA) may challenge their physiological capacity to respond. We tested the impact of CO2-induced OA on the acute thermal and salinity tolerance, energy metabolism and acid-base regulation capacity of the oyster Saccostrea glomerata. Adult S. glomerata were acclimated to three CO2 levels (ambient 380µatm, moderate 856µatm, high 1500µatm) for 5weeks (24°C, salinity 34.6) before being exposed to a series of acute temperature (15-33°C) and salinity (34.2-20) treatments. Oysters acclimated to elevated CO2 showed a significant metabolic depression and extracellular acidosis with acute exposure to elevated temperature and reduced salinity, especially at the highest CO2 of 1500µatm. Our results suggest that the acute thermal and salinity tolerance of S. glomerata and thus its distribution will reduce as OA continues to worsen.


Subject(s)
Acclimatization , Ostreidae , Salinity , Salt Tolerance , Animals , Carbon Dioxide , Hydrogen-Ion Concentration , Oceans and Seas , Temperature
17.
J Exp Biol ; 220(Pt 5): 765-774, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28250175

ABSTRACT

Sessile marine molluscs living in the intertidal zone experience periods of internal acidosis when exposed to air (emersion) during low tide. Relative to other marine organisms, molluscs have been identified as vulnerable to future ocean acidification; however, paradoxically it has also been shown that molluscs exposed to high CO2 environments are more resilient compared with those molluscs naive to CO2 exposure. Two competing hypotheses were tested using a novel experimental design incorporating tidal simulations to predict the future intertidal limit of oysters in a high-CO2 world; either high-shore oysters will be more tolerant of elevated PCO2 because of their regular acidosis, or elevated PCO2  will cause high-shore oysters to reach their limit. Sydney rock oysters, Saccostrea glomerata, were collected from the high-intertidal and subtidal areas of the shore and exposed in an orthogonal design to either an intertidal or a subtidal treatment at ambient or elevated PCO2 , and physiological variables were measured. The combined treatment of tidal emersion and elevated PCO2  interacted synergistically to reduce the haemolymph pH (pHe) of oysters, and increase the PCO2  in the haemolymph (Pe,CO2 ) and standard metabolic rate. Oysters in the intertidal treatment also had lower condition and growth. Oysters showed a high degree of plasticity, and little evidence was found that intertidal oysters were more resilient than subtidal oysters. It is concluded that in a high-CO2 world the upper vertical limit of oyster distribution on the shore may be reduced. These results suggest that previous studies on intertidal organisms that lacked tidal simulations may have underestimated the effects of elevated PCO2.


Subject(s)
Carbon Dioxide/analysis , Carbon Dioxide/metabolism , Hemolymph/metabolism , Ostreidae/physiology , Seawater/analysis , Acclimatization , Animals , Aquatic Organisms/growth & development , Aquatic Organisms/physiology , Basal Metabolism , Hydrogen-Ion Concentration , Ostreidae/growth & development
18.
Biol Lett ; 13(2)2017 Feb.
Article in English | MEDLINE | ID: mdl-28202683

ABSTRACT

Parental effects passed from adults to their offspring have been identified as a source of rapid acclimation that may allow marine populations to persist as our surface oceans continue to decrease in pH. Little is known, however, whether parental effects are beneficial for offspring in the presence of multiple stressors. We exposed adults of the oyster Saccostrea glomerata to elevated CO2 and examined the impacts of elevated CO2 (control = 392; 856 µatm) combined with elevated temperature (control = 24; 28°C), reduced salinity (control = 35; 25) and reduced food concentration (control = full; half diet) on their larvae. Adult exposure to elevated CO2 had a positive impact on larvae reared at elevated CO2 as a sole stressor, which were 8% larger and developed faster at elevated CO2 compared with larvae from adults exposed to ambient CO2 These larvae, however, had significantly reduced survival in all multistressor treatments. This was particularly evident for larvae reared at elevated CO2 combined with elevated temperature or reduced food concentration, with no larvae surviving in some treatment combinations. Larvae from CO2-exposed adults had a higher standard metabolic rate. Our results provide evidence that parental exposure to ocean acidification may be maladaptive when larvae experience multiple stressors.


Subject(s)
Carbon Dioxide/toxicity , Ostreidae/growth & development , Seawater/chemistry , Acclimatization , Animals , Female , Hydrogen-Ion Concentration , Larva/drug effects , Larva/growth & development , Male , Oceans and Seas , Ostreidae/drug effects , Salinity , Stress, Physiological , Temperature
19.
Mol Ecol ; 25(19): 4836-49, 2016 10.
Article in English | MEDLINE | ID: mdl-27543886

ABSTRACT

Marine organisms need to adapt in order to cope with the adverse effects of ocean acidification and warming. Transgenerational exposure to CO2 stress has been shown to enhance resilience to ocean acidification in offspring from a number of species. However, the molecular basis underlying such adaptive responses is currently unknown. Here, we compared the transcriptional profiles of two genetically distinct oyster breeding lines following transgenerational exposure to elevated CO2 in order to explore the molecular basis of acclimation or adaptation to ocean acidification in these organisms. The expression of key target genes associated with antioxidant defence, metabolism and the cytoskeleton was assessed in oysters exposed to elevated CO2 over three consecutive generations. This set of target genes was chosen specifically to test whether altered responsiveness of intracellular stress mechanisms contributes to the differential acclimation of oyster populations to climate stressors. Transgenerational exposure to elevated CO2 resulted in changes to both basal and inducible expression of those key target genes (e.g. ecSOD, catalase and peroxiredoxin 6), particularly in oysters derived from the disease-resistant, fast-growing B2 line. Exposure to CO2 stress over consecutive generations produced opposite and less evident effects on transcription in a second population that was derived from wild-type (nonselected) oysters. The analysis of key target genes revealed that the acute responses of oysters to CO2 stress appear to be affected by population-specific genetic and/or phenotypic traits and by the CO2 conditions to which their parents had been exposed. This supports the contention that the capacity for heritable change in response to ocean acidification varies between oyster breeding lines and is mediated by parental conditioning.


Subject(s)
Acclimatization/genetics , Acids/chemistry , Climate Change , Ostreidae/genetics , Seawater/chemistry , Animals , Hydrogen-Ion Concentration , New South Wales , Transcriptome
20.
PLoS One ; 10(7): e0132276, 2015.
Article in English | MEDLINE | ID: mdl-26147612

ABSTRACT

Ocean acidification (OA) is predicted to have widespread implications for marine organisms, yet the capacity for species to acclimate or adapt over this century remains unknown. Recent transgenerational studies have shown that for some marine species, exposure of adults to OA can facilitate positive carryover effects to their larval and juvenile offspring that help them to survive in acidifying oceanic conditions. But whether these positive carryover effects can persist into adulthood or the next generation is unknown. Here we tested whether positive carryover effects found in larvae of the oyster, Saccostrea glomerata following transgenerational exposure to elevated CO2, could persist into adulthood and whether subsequent transgenerational exposure of adults to elevated CO2 would facilitate similar adaptive responses in the next generation of larvae and juveniles. Following our previous transgenerational exposure of parental adults and first generation (F1) larvae to ambient (385 µatm) and elevated (856 µatm) CO2, newly settled F1 juveniles were transferred to the field at ambient CO2 for 14 months, until they reached reproductive maturity. At this time, the F1 adults were returned to the laboratory and the previous transgenerational CO2 exposure was repeated to produce F2 offspring. We found that the capacity of adults to regulate extracellular pH at elevated CO2 was improved if they had a prior history of transgenerational exposure to elevated CO2. In addition, subsequent transgenerational exposure of these adults led to an increase in the resilience of their larval and juvenile offspring. Offspring with a history of transgenerational exposure to elevated CO2 had a lower percentage abnormality, faster development rate, faster shell growth and increased heart rate at elevated CO2 compared with F2 offspring with no prior history of exposure to elevated CO2. Our results suggest that positive carryover effects originating during parental and larval exposure will be important in mediating some of the impacts of OA for later life-history stages and generations.


Subject(s)
Acclimatization/physiology , Carbon Dioxide/toxicity , Hydrogen-Ion Concentration , Ostreidae/physiology , Seawater/chemistry , Animal Shells/chemistry , Animals , Atmosphere , Carbon Dioxide/chemistry , Carbonates/analysis , Environmental Exposure , Epigenesis, Genetic , Female , Larva/drug effects , Larva/physiology , Male , Models, Biological , Ostreidae/drug effects , Ostreidae/growth & development , Pacific Ocean , Reproduction , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...