Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Cell Biol ; 222(5)2023 05 01.
Article in English | MEDLINE | ID: mdl-36828364

ABSTRACT

Dendritic spines are the postsynaptic compartment of a neuronal synapse and are critical for synaptic connectivity and plasticity. A developmental precursor to dendritic spines, dendritic filopodia (DF), facilitate synapse formation by sampling the environment for suitable axon partners during neurodevelopment and learning. Despite the significance of the actin cytoskeleton in driving these dynamic protrusions, the actin elongation factors involved are not well characterized. We identified the Ena/VASP protein EVL as uniquely required for the morphogenesis and dynamics of DF. Using a combination of genetic and optogenetic manipulations, we demonstrated that EVL promotes protrusive motility through membrane-direct actin polymerization at DF tips. EVL forms a complex at nascent protrusions and DF tips with MIM/MTSS1, an I-BAR protein important for the initiation of DF. We proposed a model in which EVL cooperates with MIM to coalesce and elongate branched actin filaments, establishing the dynamic lamellipodia-like architecture of DF.


Subject(s)
Actins , Cell Adhesion Molecules , Microfilament Proteins , Pseudopodia , Actin Cytoskeleton/metabolism , Actins/metabolism , Dendritic Spines/metabolism , Neurons/metabolism , Pseudopodia/metabolism , Synapses/metabolism , Cell Adhesion Molecules/metabolism , Microfilament Proteins/metabolism
2.
STAR Protoc ; 3(3): 101516, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35780429

ABSTRACT

We describe a three-dimensional (3D) in vitro assay for quantifying cancer cell invasion into a 3D microenvironment with defined biochemical and biophysical properties. Researchers can quantify invasion dynamics (e.g., cell motility and directionality) and examine morphological changes during invasion, using live-cell and confocal imaging techniques. Together, these advantages over existing in vitro invasion assays, such as transwell-based assays, provide researchers with a valuable tool to gain insight into the mechanisms regulating cancer cell invasion. For complete details on the use and execution of this protocol, please refer to Padilla-Rodriguez et al. (2018) and Watson et al. (2021).


Subject(s)
Tumor Microenvironment , Biophysics , Cell Line, Tumor , Cell Movement/physiology , Humans , Neoplasm Invasiveness
3.
Elife ; 112022 01 25.
Article in English | MEDLINE | ID: mdl-35076015

ABSTRACT

The human proteome is replete with short linear motifs (SLiMs) of four to six residues that are critical for protein-protein interactions, yet the importance of the sequence surrounding such motifs is underexplored. We devised a proteomic screen to examine the influence of SLiM sequence context on protein-protein interactions. Focusing on the EVH1 domain of human ENAH, an actin regulator that is highly expressed in invasive cancers, we screened 36-residue proteome-derived peptides and discovered new interaction partners of ENAH and diverse mechanisms by which context influences binding. A pocket on the ENAH EVH1 domain that has diverged from other Ena/VASP paralogs recognizes extended SLiMs and favors motif-flanking proline residues. Many high-affinity ENAH binders that contain two proline-rich SLiMs use a noncanonical site on the EVH1 domain for binding and display a thermodynamic signature consistent with the two-motif chain engaging a single domain. We also found that photoreceptor cilium actin regulator (PCARE) uses an extended 23-residue region to obtain a higher affinity than any known ENAH EVH1-binding motif. Our screen provides a way to uncover the effects of proteomic context on motif-mediated binding, revealing diverse mechanisms of control over EVH1 interactions and establishing that SLiMs can't be fully understood outside of their native context.


Subject(s)
Actins/metabolism , Binding Sites , DNA-Binding Proteins/metabolism , Microfilament Proteins/metabolism , Proline/metabolism , Cell Adhesion Molecules/metabolism , HEK293 Cells , Humans , Proteomics
4.
Elife ; 102021 12 02.
Article in English | MEDLINE | ID: mdl-34854809

ABSTRACT

Metazoan proteomes contain many paralogous proteins that have evolved distinct functions. The Ena/VASP family of actin regulators consists of three members that share an EVH1 interaction domain with a 100 % conserved binding site. A proteome-wide screen revealed photoreceptor cilium actin regulator (PCARE) as a high-affinity ligand for ENAH EVH1. Here, we report the surprising observation that PCARE is ~100-fold specific for ENAH over paralogs VASP and EVL and can selectively bind ENAH and inhibit ENAH-dependent adhesion in cells. Specificity arises from a mechanism whereby PCARE stabilizes a conformation of the ENAH EVH1 domain that is inaccessible to family members VASP and EVL. Structure-based modeling rapidly identified seven residues distributed throughout EVL that are sufficient to differentiate binding by ENAH vs. EVL. By exploiting the ENAH-specific conformation, we rationally designed the tightest and most selective ENAH binder to date. Our work uncovers a conformational mechanism of interaction specificity that distinguishes highly similar paralogs and establishes tools for dissecting specific Ena/VASP functions in processes including cancer cell invasion.


Subject(s)
Actins/metabolism , Binding Sites , Cell Adhesion Molecules/metabolism , Eye Proteins/metabolism , Microfilament Proteins/metabolism , Phosphoproteins/metabolism , HEK293 Cells , Humans , MCF-7 Cells , Molecular Conformation , Protein Domains
5.
Cell Rep ; 35(13): 109293, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34192535

ABSTRACT

While the immediate and transitory response of breast cancer cells to pathological stiffness in their native microenvironment has been well explored, it remains unclear how stiffness-induced phenotypes are maintained over time after cancer cell dissemination in vivo. Here, we show that fibrotic-like matrix stiffness promotes distinct metastatic phenotypes in cancer cells, which are preserved after transition to softer microenvironments, such as bone marrow. Using differential gene expression analysis of stiffness-responsive breast cancer cells, we establish a multigenic score of mechanical conditioning (MeCo) and find that it is associated with bone metastasis in patients with breast cancer. The maintenance of mechanical conditioning is regulated by RUNX2, an osteogenic transcription factor, established driver of bone metastasis, and mitotic bookmarker that preserves chromatin accessibility at target gene loci. Using genetic and functional approaches, we demonstrate that mechanical conditioning maintenance can be simulated, repressed, or extended, with corresponding changes in bone metastatic potential.


Subject(s)
Bone Neoplasms/secondary , Breast Neoplasms/pathology , Breast Neoplasms/physiopathology , Biomechanical Phenomena , Bone Marrow/pathology , Cell Line, Tumor , Cell Nucleus/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Extracellular Matrix/metabolism , Female , Humans , Mechanotransduction, Cellular , Neoplasm Invasiveness , Tumor Microenvironment
6.
J Cell Biol ; 218(12): 4215-4235, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31594807

ABSTRACT

The mechanical properties of a cell's microenvironment influence many aspects of cellular behavior, including cell migration. Durotaxis, the migration toward increasing matrix stiffness, has been implicated in processes ranging from development to cancer. During durotaxis, mechanical stimulation by matrix rigidity leads to directed migration. Studies suggest that cells sense mechanical stimuli, or mechanosense, through the acto-myosin cytoskeleton at focal adhesions (FAs); however, FA actin cytoskeletal remodeling and its role in mechanosensing are not fully understood. Here, we show that the Ena/VASP family member, Ena/VASP-like (EVL), polymerizes actin at FAs, which promotes cell-matrix adhesion and mechanosensing. Importantly, we show that EVL regulates mechanically directed motility, and that suppression of EVL expression impedes 3D durotactic invasion. We propose a model in which EVL-mediated actin polymerization at FAs promotes mechanosensing and durotaxis by maturing, and thus reinforcing, FAs. These findings establish dynamic FA actin polymerization as a central aspect of mechanosensing and identify EVL as a crucial regulator of this process.


Subject(s)
Actins/metabolism , Actomyosin/metabolism , Focal Adhesions/metabolism , Mechanotransduction, Cellular , Actin Cytoskeleton/metabolism , Animals , Cell Adhesion , Cell Movement , HEK293 Cells , Humans , MCF-7 Cells , Mice , Microfilament Proteins/metabolism , Microtubules/metabolism , Myosins/metabolism , NIH 3T3 Cells
7.
Mol Cell Proteomics ; 18(7): 1363-1381, 2019 07.
Article in English | MEDLINE | ID: mdl-31018989

ABSTRACT

Insulin-stimulated glucose uptake is known to involve microtubules, although the function of microtubules and the microtubule-regulating proteins involved in insulin action are poorly understood. CLASP2, a plus-end tracking microtubule-associated protein (+TIP) that controls microtubule dynamics, was recently implicated as the first +TIP associated with insulin-regulated glucose uptake. Here, using protein-specific targeted quantitative phosphoproteomics within 3T3-L1 adipocytes, we discovered that insulin regulates phosphorylation of the CLASP2 network members G2L1, MARK2, CLIP2, AGAP3, and CKAP5 as well as EB1, revealing the existence of a previously unknown microtubule-associated protein system that responds to insulin. To further investigate, G2L1 interactome studies within 3T3-L1 adipocytes revealed that G2L1 coimmunoprecipitates CLASP2 and CLIP2 as well as the master integrators of +TIP assembly, the end binding (EB) proteins. Live-cell total internal reflection fluorescence microscopy in adipocytes revealed G2L1 and CLASP2 colocalize on microtubule plus-ends. We found that although insulin increases the number of CLASP2-containing plus-ends, insulin treatment simultaneously decreases CLASP2-containing plus-end velocity. In addition, we discovered that insulin stimulates redistribution of CLASP2 and G2L1 from exclusive plus-end tracking to "trailing" behind the growing tip of the microtubule. Insulin treatment increases α-tubulin Lysine 40 acetylation, a mechanism that was observed to be regulated by a counterbalance between GSK3 and mTOR, and led to microtubule stabilization. Our studies introduce insulin-stimulated microtubule stabilization and plus-end trailing of +TIPs as new modes of insulin action and reveal the likelihood that a network of microtubule-associated proteins synergize to coordinate insulin-regulated microtubule dynamics.


Subject(s)
Adipocytes/metabolism , Insulin/pharmacology , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , 3T3-L1 Cells , Acetylation/drug effects , Adipocytes/drug effects , Animals , Lysine/metabolism , Mice , Microtubules/drug effects , Phosphorylation/drug effects , Protein Binding/drug effects , Protein Interaction Mapping , Protein Transport/drug effects , Tubulin/metabolism
8.
eNeuro ; 5(5)2018.
Article in English | MEDLINE | ID: mdl-30263951

ABSTRACT

Cell cryopreservation improves reproducibility and enables flexibility in experimental design. Although conventional freezing methodologies have been used to preserve primary neurons, poor cell viability and reduced survival severely limited their utility. We screened several high-performance freezing media and found that CryoStor10 (CS10) provided superior cryoprotection to primary mouse embryonic cortical neurons compared to other commercially-available or traditional reagents, permitting the recovery of 68.8% of cells relative to a fresh dissection. We characterized developmental, morphometric, and functional indicators of neuron maturation and found that, without exception, neurons recovered from cryostorage in CS10 media faithfully recapitulate in vitro neurodevelopment in-step with neurons obtained by fresh dissection. Our method establishes cryopreserved neurons as a reliable, efficient, and equivalent model to fresh neuron cultures.


Subject(s)
Cell Survival/physiology , Cryopreservation , Neurons/physiology , Reproducibility of Results , Animals , Cell Culture Techniques/methods , Cells, Cultured , Cryopreservation/methods , Mice , Rodentia
9.
Nat Commun ; 9(1): 2980, 2018 07 30.
Article in English | MEDLINE | ID: mdl-30061623

ABSTRACT

Estrogen promotes growth of estrogen receptor-positive (ER+) breast tumors. However, epidemiological studies examining the prognostic characteristics of breast cancer in postmenopausal women receiving hormone replacement therapy reveal a significant decrease in tumor dissemination, suggesting that estrogen has potential protective effects against cancer cell invasion. Here, we show that estrogen suppresses invasion of ER+ breast cancer cells by increasing transcription of the Ena/VASP protein, EVL, which promotes the generation of suppressive cortical actin bundles that inhibit motility dynamics, and is crucial for the ER-mediated suppression of invasion in vitro and in vivo. Interestingly, despite its benefits in suppressing tumor growth, anti-estrogenic endocrine therapy decreases EVL expression and increases local invasion in patients. Our results highlight the dichotomous effects of estrogen on tumor progression and suggest that, in contrast to its established role in promoting growth of ER+ tumors, estrogen has a significant role in suppressing invasion through actin cytoskeletal remodeling.


Subject(s)
Actin Cytoskeleton/chemistry , Actins/chemistry , Breast Neoplasms/pathology , Estrogen Receptor alpha/chemistry , Estrogens/chemistry , Neoplasm Invasiveness , Animals , Caco-2 Cells , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation , Dogs , Estradiol/chemistry , Female , Gene Expression Profiling , HEK293 Cells , Humans , Lymph Nodes/pathology , MCF-7 Cells , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred NOD , Neoplasm Metastasis , Transcription, Genetic
10.
Small GTPases ; 9(1-2): 116-129, 2018 03 04.
Article in English | MEDLINE | ID: mdl-28125340

ABSTRACT

Cell polarity refers to the asymmetric localization of cellular components that allows cells to carry out their specialized functions, be they epithelial barrier function, transmission of action potentials in nerve cells, or modulation of the immune response. The establishment and maintenance of cell polarity requires the directed trafficking of membrane proteins and lipids - essential processes that are mediated by Rab GTPases. Interestingly, several of the Rabs that impact polarity are present in the earliest eukaryotes, and the Rab polarity repertoire has expanded as cells have become more complex. There is a substantial conservation of Rab function across diverse cell types. Rabs act through an assortment of effector proteins that include scaffolding proteins, cytoskeletal motors, and other small GTPases. In this review we highlight the similarities and differences in Rab function for the instruction of polarity in diverse cell types.


Subject(s)
Cell Polarity , rab GTP-Binding Proteins/metabolism , Animals , Epithelial Cells/cytology , Humans , Immunity , Neurons/cytology
11.
Mol Biol Cell ; 26(8): 1523-31, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25694446

ABSTRACT

PKCι is essential for the establishment of epithelial polarity and the normal assembly of tight junctions. We find that PKCι knockdown does not compromise the steady-state distribution of most tight junction proteins but results in increased transepithelial resistance (TER) and decreased paracellular permeability. Analysis of the levels of tight junction components demonstrates that claudin-2 protein levels are decreased. However, other tight junction proteins, such as claudin-1, ZO-1, and occludin, are unchanged. Incubation with an aPKC pseudosubstrate recapitulates the phenotype of PKCι knockdown, including increased TER and decreased levels of claudin-2. In addition, overexpression of PKCι results in increased claudin-2 levels. ELISA and coimmunoprecipitation show that the TGN/endosomal small GTPase Rab14 and PKCι interact directly. Immunolabeling shows that PKCι and Rab14 colocalize in both intracellular puncta and at the plasma membrane and that Rab14 expression is required for normal PKCι distribution in cysts in 3D culture. We showed previously that knockdown of Rab14 results in increased TER and decreased claudin-2. Our results suggest that Rab14 and aPKC interact to regulate trafficking of claudin-2 out of the lysosome-directed pathway.


Subject(s)
Claudin-2/metabolism , Epithelial Cells/metabolism , Isoenzymes/metabolism , Protein Kinase C/metabolism , Tight Junctions/metabolism , rab GTP-Binding Proteins/metabolism , Animals , Claudin-2/genetics , Dogs , Gene Expression Regulation , Gene Knockdown Techniques , Humans , Lysosomes/metabolism , Madin Darby Canine Kidney Cells , Permeability , Protein Transport
12.
Age (Dordr) ; 36(1): 199-212, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23949159

ABSTRACT

The chronic and systemic administration of rapamycin extends life span in mammals. Rapamycin is a pharmacological inhibitor of mTOR. Metformin also inhibits mTOR signaling but by activating the upstream kinase AMPK. Here we report the effects of chronic and systemic administration of the two mTOR inhibitors, rapamycin and metformin, on adult neural stem cells of the subventricular region and the dendate gyrus of the mouse hippocampus. While rapamycin decreased the number of neural progenitors, metformin-mediated inhibition of mTOR had no such effect. Adult-born neurons are considered important for cognitive and behavioral health, and may contribute to improved health span. Our results demonstrate that distinct approaches of inhibiting mTOR signaling can have significantly different effects on organ function. These results underscore the importance of screening individual mTOR inhibitors on different organs and physiological processes for potential adverse effects that may compromise health span.


Subject(s)
Hippocampus/drug effects , Longevity/drug effects , Metformin/pharmacology , Sirolimus/pharmacology , Stem Cells/drug effects , TOR Serine-Threonine Kinases/metabolism , Animals , Apoptosis/drug effects , Immunohistochemistry , Injections, Intraperitoneal , Metformin/administration & dosage , Mice , Mice, Inbred C57BL , Phosphorylation , Signal Transduction/drug effects , Sirolimus/administration & dosage
13.
Proc Natl Acad Sci U S A ; 110(35): 14450-5, 2013 Aug 27.
Article in English | MEDLINE | ID: mdl-23940317

ABSTRACT

Atypical protein kinase C (aPKC) isoforms ζ and λ interact with polarity complex protein Par3 and are evolutionarily conserved regulators of cell polarity. Prkcz encodes aPKC-ζ and PKM-ζ, a truncated, neuron-specific alternative transcript, and Prkcl encodes aPKC-λ. Here we show that, in embryonic hippocampal neurons, two aPKC isoforms, aPKC-λ and PKM-ζ, are expressed. The localization of these isoforms is spatially distinct in a polarized neuron. aPKC-λ, as well as Par3, localizes at the presumptive axon, whereas PKM-ζ and Par3 are distributed at non-axon-forming neurites. PKM-ζ competes with aPKC-λ for binding to Par3 and disrupts the aPKC-λ-Par3 complex. Silencing of PKM-ζ or overexpression of aPKC-λ in hippocampal neurons alters neuronal polarity, resulting in neurons with supernumerary axons. In contrast, the overexpression of PKM-ζ prevents axon specification. Our studies suggest a molecular model wherein mutually antagonistic intermolecular competition between aPKC isoforms directs the establishment of neuronal polarity.


Subject(s)
Cell Polarity/physiology , Hippocampus/cytology , Isoenzymes/metabolism , Neurons/cytology , Protein Kinase C/metabolism , Animals , Cells, Cultured , Female , Isoenzymes/physiology , Pregnancy , Protein Kinase C/physiology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...