Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Acta Neuropathol Commun ; 12(1): 13, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38243318

ABSTRACT

Cerebrospinal fluid (CSF) analysis is underutilized in patients with glioblastoma (GBM), partly due to a lack of studies demonstrating the clinical utility of CSF biomarkers. While some studies show the utility of CSF cell-free DNA analysis, studies analyzing CSF metabolites in patients with glioblastoma are limited. Diffuse gliomas have altered cellular metabolism. For example, mutations in isocitrate dehydrogenase enzymes (e.g., IDH1 and IDH2) are common in diffuse gliomas and lead to increased levels of D-2-hydroxyglutarate in CSF. However, there is a poor understanding of changes CSF metabolites in GBM patients. In this study, we performed targeted metabolomic analysis of CSF from n = 31 patients with GBM and n = 13 individuals with non-neoplastic conditions (controls), by mass spectrometry. Hierarchical clustering and sparse partial least square-discriminant analysis (sPLS-DA) revealed differences in CSF metabolites between GBM and control CSF, including metabolites associated with fatty acid oxidation and the gut microbiome (i.e., carnitine, 2-methylbutyrylcarnitine, shikimate, aminobutanal, uridine, N-acetylputrescine, and farnesyl diphosphate). In addition, we identified differences in CSF metabolites in GBM patients based on the presence/absence of TP53 or PTEN mutations, consistent with the idea that different mutations have different effects on tumor metabolism. In summary, our results increase the understanding of CSF metabolites in patients with diffuse gliomas and highlight several metabolites that could be informative biomarkers in patients with GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Glioblastoma/genetics , Brain Neoplasms/pathology , Glioma/genetics , Mutation/genetics , Genomics , Biomarkers, Tumor/genetics , Isocitrate Dehydrogenase/genetics
2.
Neuro Oncol ; 26(5): 826-839, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38237157

ABSTRACT

BACKGROUND: Glioblastomas (GBMs) are central nervous system tumors that resist standard-of-care interventions and even immune checkpoint blockade. Myeloid cells in the tumor microenvironment can contribute to GBM progression; therefore, emerging immunotherapeutic approaches include reprogramming these cells to achieve desirable antitumor activity. Triggering receptor expressed on myeloid cells 2 (TREM2) is a myeloid signaling regulator that has been implicated in a variety of cancers and neurological diseases with contrasting functions, but its role in GBM immunopathology and progression is still under investigation. METHODS: Our reverse translational investigations leveraged single-cell RNA sequencing and cytometry of human gliomas to characterize TREM2 expression across myeloid subpopulations. Using 2 distinct murine glioma models, we examined the role of Trem2 on tumor progression and immune modulation of myeloid cells. Furthermore, we designed a method of tracking phagocytosis of glioma cells in vivo and employed in vitro assays to mechanistically understand the influence of TREM2 signaling on tumor uptake. RESULTS: We discovered that TREM2 expression does not correlate with immunosuppressive pathways, but rather showed strong a positive association with the canonical phagocytosis markers lysozyme (LYZ) and macrophage scavenger receptor (CD163) in gliomas. While Trem2 deficiency was found to be dispensable for gliomagenesis, Trem2+ myeloid cells display enhanced tumor uptake compared to Trem2- cells. Mechanistically, we demonstrate that TREM2 mediates phagocytosis via Syk signaling. CONCLUSIONS: These results indicate that TREM2 is not associated with immunosuppression in gliomas. Instead, TREM2 is an important regulator of phagocytosis that may be exploited as a potential therapeutic strategy for brain tumors.


Subject(s)
Brain Neoplasms , Glioblastoma , Membrane Glycoproteins , Phagocytosis , Receptors, Immunologic , Animals , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Mice , Humans , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Tumor Microenvironment , Myeloid Cells/metabolism , Mice, Inbred C57BL , Tumor Cells, Cultured , Signal Transduction
3.
Neuro Oncol ; 26(2): 236-250, 2024 02 02.
Article in English | MEDLINE | ID: mdl-37847405

ABSTRACT

BACKGROUND: Glioblastoma (GBM) has poor prognosis due to ineffective agents and poor delivery methods. MicroRNAs (miRs) have been explored as novel therapeutics for GBM, but the optimal miRs and the ideal delivery strategy remain unresolved. In this study, we sought to identify the most effective pan-subtype anti-GBM miRs and to develop an improved delivery system for these miRs. METHODS: We conducted an unbiased screen of over 600 miRs against 7 glioma stem cell (GSC) lines representing all GBM subtypes to identify a set of pan-subtype-specific anti-GBM miRs and then used available TCGA GBM patient outcomes and miR expression data to hone in on miRs that were most likely to be clinically effective. To enhance delivery and expression of the miRs, we generated a polycistronic plasmid encoding 3 miRs (pPolymiR) and used HEK293T cells as biofactories to package pPolymiR into engineered exosomes (eExos) that incorporate viral proteins (Gag/VSVg) in their structure (eExos+pPolymiR) to enhance function. RESULTS: Our stepwise screen identified miR-124-2, miR-135a-2, and let-7i as the most effective miRs across all GBM subtypes with clinical relevance. Delivery of eExos+pPolymiR resulted in high expression of all 3 miRs in GSCs, and significantly decreased GSC proliferation in vitro. eExos+pPolymiR prolonged survival of GSC-bearing mice in vivo when compared with eExos carrying each of the miRs individually or as a cocktail. CONCLUSION: eExos+pPolymiR, which includes a pan-subtype anti-glioma-specific miR combination encoded in a polycistronic plasmid and a novel exosome delivery platform, represents a new and potentially powerful anti-GBM therapeutic.


Subject(s)
Brain Neoplasms , Exosomes , Glioblastoma , Glioma , MicroRNAs , Humans , Animals , Mice , MicroRNAs/genetics , Glioblastoma/genetics , Glioblastoma/therapy , Glioblastoma/metabolism , Exosomes/genetics , Exosomes/metabolism , HEK293 Cells , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Brain Neoplasms/metabolism , Cell Line, Tumor , Glioma/genetics , Gene Expression Regulation, Neoplastic
4.
Nat Commun ; 13(1): 767, 2022 02 09.
Article in English | MEDLINE | ID: mdl-35140215

ABSTRACT

A major rate-limiting step in developing more effective immunotherapies for GBM is our inadequate understanding of the cellular complexity and the molecular heterogeneity of immune infiltrates in gliomas. Here, we report an integrated analysis of 201,986 human glioma, immune, and other stromal cells at the single cell level. In doing so, we discover extensive spatial and molecular heterogeneity in immune infiltrates. We identify molecular signatures for nine distinct myeloid cell subtypes, of which five are independent prognostic indicators of glioma patient survival. Furthermore, we identify S100A4 as a regulator of immune suppressive T and myeloid cells in GBM and demonstrate that deleting S100a4 in non-cancer cells is sufficient to reprogram the immune landscape and significantly improve survival. This study provides insights into spatial, molecular, and functional heterogeneity of glioma and glioma-associated immune cells and demonstrates the utility of this dataset for discovering therapeutic targets for this poorly immunogenic cancer.


Subject(s)
Immunotherapy , S100 Calcium-Binding Protein A4/isolation & purification , Single-Cell Analysis/methods , Animals , Brain Neoplasms/immunology , Female , Glioma/immunology , Humans , Male , Mice , Mice, Inbred C57BL , Myeloid Cells , Prognosis , S100 Calcium-Binding Protein A4/genetics , Tumor Microenvironment/immunology
5.
Mol Ther ; 30(4): 1610-1627, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35151844

ABSTRACT

The FGFR3-TACC3 (F3-T3) fusion gene was discovered as an oncogenic molecule in glioblastoma and bladder cancers, and has subsequently been found in many cancer types. Notably, F3-T3 was found to be highly expressed in both untreated and matched recurrence glioblastoma under the concurrent radiotherapy and temozolomide (TMZ) treatment, suggesting that targeting F3-T3 is a valid strategy for treatment. Here, we show that the F3-T3 protein is a client of heat shock protein 90 (HSP90), forming a ternary complex with the cell division cycle 37 (CDC37). Deprivation of HSP90 or CDC37 disrupts the formation of the ternary complex, which destabilizes glycosylated F3-T3, and thereby suppresses F3-T3 oncogenic activity. Gliomas harboring F3-T3 are resistant to TMZ chemotherapy. HSP90 inhibitors sensitized F3-T3 glioma cells to TMZ via the inhibition of F3-T3 activation and potentiated TMZ-induced DNA damage. These results demonstrate that F3-T3 oncogenic function is dependent on the HSP90 chaperone system and suggests a new clinical option for targeting this genetic aberration in cancer.


Subject(s)
Glioblastoma , Glioma , Carcinogenesis , Cell Cycle Proteins/genetics , Cell Line, Tumor , Chaperonins/genetics , Glioblastoma/drug therapy , Glioblastoma/genetics , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Humans , Microtubule-Associated Proteins/genetics , Molecular Chaperones/genetics , Neoplasm Recurrence, Local , Receptor, Fibroblast Growth Factor, Type 3 , Temozolomide/pharmacology
6.
J Neurosurg ; 136(3): 757-767, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34450587

ABSTRACT

OBJECTIVE: Delta-24-RGD is an oncolytic adenovirus that is capable of replicating in and killing human glioma cells. Although intratumoral delivery of Delta-24-RGD can be effective, systemic delivery would improve its clinical application. Bone marrow-derived human mesenchymal stem cells (BM-hMSCs) obtained from healthy donors have been investigated as virus carriers. However, it is unclear whether BM-hMSCs can be derived from glioma patients previously treated with marrow-toxic chemotherapy or whether such BM-hMSCs can deliver oncolytic viruses effectively. Herein, the authors undertook a prospective clinical trial to determine the feasibility of obtaining BM-hMSCs from patients with recurrent malignant glioma who were previously exposed to marrow-toxic chemotherapy. METHODS: The authors enrolled 5 consecutive patients who had been treated with radiation therapy and chemotherapy. BM aspirates were obtained from the iliac crest and were cultured to obtain BM-hMSCs. RESULTS: The patient-derived BM-hMSCs (PD-BM-hMSCs) had a morphology similar to that of healthy donor-derived BM-hMSCs (HD-BM-hMSCs). Flow cytometry revealed that all 5 cell lines expressed canonical MSC surface markers. Importantly, these cultures could be made to differentiate into osteocytes, adipocytes, and chondrocytes. In all cases, the PD-BM-hMSCs homed to intracranial glioma xenografts in mice after intracarotid delivery as effectively as HD-BM-hMSCs. The PD-BM-hMSCs loaded with Delta-24-RGD (PD-BM-MSC-D24) effectively eradicated human gliomas in vitro. In in vivo studies, intravascular administration of PD-BM-MSC-D24 increased the survival of mice harboring U87MG gliomas. CONCLUSIONS: The authors conclude that BM-hMSCs can be acquired from patients previously treated with marrow-toxic chemotherapy and that these PD-BM-hMSCs are effective carriers for oncolytic viruses.


Subject(s)
Glioblastoma , Glioma , Mesenchymal Stem Cells , Oncolytic Viruses , Animals , Bone Marrow , Glioblastoma/pathology , Glioblastoma/therapy , Glioma/pathology , Humans , Mesenchymal Stem Cells/pathology , Mice , Neoplasm Recurrence, Local/pathology , Oligopeptides , Prospective Studies
7.
Neuro Oncol ; 23(11): 1911-1921, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34059921

ABSTRACT

BACKGROUND: Oncolytic adenoviruses are promising new treatments against solid tumors, particularly for glioblastoma (GBM), and preclinical models are required to evaluate the mechanisms of efficacy. However, due to the species selectivity of adenovirus, there is currently no single animal model that supports viral replication, tumor oncolysis, and a virus-mediated immune response. To address this gap, we took advantage of the Syrian hamster to develop the first intracranial glioma model that is both adenovirus replication-permissive and immunocompetent. METHODS: We generated hamster glioma stem-like cells (hamGSCs) by transforming hamster neural stem cells with hTERT, simian virus 40 large T antigen, and h-RasV12. Using a guide-screw system, we generated an intracranial tumor model in the hamster. The efficacy of the oncolytic adenovirus Delta-24-RGD was assessed by survival studies, and tumor-infiltrating lymphocytes (TILs) were evaluated by flow cytometry. RESULTS: In vitro, hamGSCs supported viral replication and were susceptible to Delta-24-RGD mediated cell death. In vivo, hamGSCs consistently developed into highly proliferative tumors resembling high-grade glioma. Flow cytometric analysis of hamster gliomas revealed significantly increased T-cell infiltration in Delta-24-RGD infected tumors, indicative of immune activation. Treating tumor-bearing hamsters with Delta-24-RGD led to significantly increased survival compared to hamsters treated with phosphate buffered saline (PBS). CONCLUSIONS: This adenovirus-permissive, immunocompetent hamster glioma model overcomes the limitations of previous model systems and provides a novel platform to study the interactions between tumor cells, the host immune system, and oncolytic adenoviral therapy; understanding of which will be critical to implementing oncolytic adenovirus in the clinic.


Subject(s)
Glioma , Oncolytic Virotherapy , Oncolytic Viruses , Adenoviridae/genetics , Animals , Cell Line, Tumor , Cricetinae , Glioma/therapy , Mesocricetus , Oligopeptides , Virus Replication
8.
Neurosurgery ; 88(1): E102-E113, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33231254

ABSTRACT

BACKGROUND: Delta-24-RGD, an oncolytic adenovirus, shows promise against glioblastoma. To enhance virus delivery, we recently demonstrated that human bone marrow-derived mesenchymal stem cells loaded with Delta-24-RGD (hMSC-D24) can eradicate glioblastomas in mouse models. There are no studies examining the safety of endovascular selective intra-arterial (ESIA) infusions of MSC-D24 in large animals simulating human clinical situations. OBJECTIVE: To perform canine preclinical studies testing the feasibility and safety of delivering increasing doses of hMSCs-D24 via ESIA infusions. METHODS: ESIA infusions of hMSC-D24 were performed in the cerebral circulation of 10 normal canines in the target vessels (internal carotid artery [ICA]/P1) via transfemoral approach using commercially available microcatheters. Increasing concentrations of hMSC-D24 or particles (as a positive control) were injected into 1 hemisphere; saline (negative control) was infused contralaterally. Toxicity (particularly embolic stroke) was assessed on postinfusion angiography, diffusion-weighted magnetic resonance imaging, clinical exam, and necropsy. RESULTS: ESIA injections were performed in the ICA (n = 7) or P1 (n = 3). In 2 animals injected with particles (positive control), strokes were detected by all assays. Of 6 canines injected with hMSC-D24 through the anterior circulation, escalating dose from 2 × 106 cells/20 mL to 1 × 108 cells/10 mL resulted in no strokes. Two animals had ischemic and hemorrhagic strokes after posterior cerebral artery catheterization. A survival experiment of 2 subjects resulted in no complications detected for 24-h before euthanization. CONCLUSION: This novel study simulating ESIA infusion demonstrates that MSCs-D24 can be infused safely at least up to doses of 1 × 108 cells/10 mL (107 cells/ml) in the canine anterior circulation using commercially available microcatheters. These findings support a clinical trial of ESIA infusion of hMSCs-D24.


Subject(s)
Cancer Vaccines/administration & dosage , Mesenchymal Stem Cell Transplantation/methods , Oncolytic Virotherapy/methods , Animals , Dogs , Heterografts , Humans , Infusions, Intra-Arterial , Male , Models, Animal
9.
Neurooncol Adv ; 2(1): vdaa132, 2020.
Article in English | MEDLINE | ID: mdl-33241214

ABSTRACT

BACKGROUND: Fusion genes form as a result of abnormal chromosomal rearrangements linking previously separate genes into one transcript. The FGFR3-TACC3 fusion gene (F3-T3) has been shown to drive gliomagenesis in glioblastoma (GBM), a cancer that is notoriously resistant to therapy. However, successful targeting of F3-T3 via small molecular inhibitors has not revealed robust therapeutic responses, and specific targeting of F3-T3 has not been achieved heretofore. Here, we demonstrate that depleting F3-T3 using custom siRNA to the fusion breakpoint junction results in successful inhibition of F3-T3+ GBMs, and that exosomes can successfully deliver these siRNAs. METHODS: We engineered 10 unique siRNAs (iF3T3) that specifically spanned the most common F3-T3 breakpoint with varying degrees of overlap, and assayed depletion by qPCR and immunoblotting. Cell viability assays were performed. Mesenchymal stem cell-derived exosomes (UC-MSC) were electroporated with iF3T3, added to cells, and F3-T3 depletion measured by qPCR. RESULTS: We verified that depleting F3-T3 using shRNA to FGFR3 resulted in decreased cell viability and improved survival in glioma-bearing mice. We then demonstrated that 7/10 iF3T3 depleted F3-T3, and importantly, did not affect levels of wild-type (WT) FGFR3 or TACC3. iF3T3 decreased cell viability in both F3T3+ GBM and bladder cancer cell lines. UC-MSC exosomes successfully delivered iF3T3 in vitro, resulting in F3-T3 depletion. CONCLUSION: Targeting F3-T3 using siRNAs specific to the fusion breakpoint is capable of eradicating F3T3+ cancers without toxicity related to inhibition of WT FGFR3 or TACC3, and UC-MSC exosomes may be a plausible vehicle to deliver iF3T3.

10.
Neurosurg Clin N Am ; 31(4): 641-649, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32921358

ABSTRACT

Dynamic interplay between cancer cells and the surrounding microenvironment is a feature of the metastatic process. Successful metastatic brain colonization requires complex mechanisms that ultimately allow tumor cells to adapt to the unique microenvironment of the central nervous system, evade immune destruction, survive, and grow. Accumulating evidence suggests that components of the brain tumor microenvironment (TME) play a vital role in the metastatic cascade. In this review, the authors summarize the contribution of the TME to the development and progression of brain metastasis. They also highlight opportunities for TME-directed targeted therapy.


Subject(s)
Brain Neoplasms/physiopathology , Tumor Microenvironment , Animals , Astrocytes/physiology , Blood-Brain Barrier/physiopathology , Brain Neoplasms/immunology , Humans
11.
J Neurosurg ; : 1-9, 2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31491769

ABSTRACT

OBJECTIVE: Bone marrow-derived human mesenchymal stem cells (BM-hMSCs) have been used in clinical trials for the treatment of several neurological disorders. MSCs have been explored as a delivery modality for targeted viral therapeutic agents in the treatment of intracranial pathologies. Delta-24-RGD, a tumor-selective oncolytic adenovirus designed to target malignant glioma cells, has been shown to be effective in animal models and in a recent clinical trial. However, the most efficient strategy for delivering oncolytic therapies remains unclear. BM-hMSCs have been shown to home toward glioma xenografts after intracarotid delivery. The feasibility of selective intraarterial infusion of BM-hMSCs loaded with Delta-24-RGD (BM-hMSC-Delta-24) to deliver the virus to the tumor is being investigated. To evaluate the feasibility of endovascular intraarterial delivery, the authors tested in vitro the compatibility of BM-hMSC-Delta-24 with a variety of commercially available, clinically common microcatheters. METHODS: BM-hMSCs were cultured, transfected with Delta-24-RGD, and resuspended in 1% human serum albumin. The solution was then injected via 4 common neuroendovascular microcatheters of different inner diameters (Marathon, Echelon-14, Marksman, and SL-10). Cell count and viability after injection through the microcatheters were assessed, including tests of injection velocity and catheter configuration. Transwell assays were performed with the injected cells to test the efficacy of BM-hMSC-Delta-24 activity against U87 glioma cells. BM-hMSC-Delta-24 compatibility was also tested with common neuroendovascular medications: Omnipaque, verapamil, and heparin. RESULTS: The preinfusion BM-hMSC-Delta-24 cell count was 1.2 × 105 cells/ml, with 98.7% viability. There was no significant difference in postinfusion cell count or viability for any of the catheters. Increasing the injection velocity from 1.0 ml/min to 73.2 ml/min, or modifying the catheter shape from straight to tortuous, did not significantly reduce cell count or viability. Cell count and viability remained stable for up to 5 hours when the cell solution was stored on ice. Mixing BM-hMSC-Delta-24 with clinical concentrations of Omnipaque, verapamil, and heparin prior to infusion did not alter cell count or viability. Transwell experiments demonstrated that the antiglioma activity of BM-hMSC-Delta-24 was maintained after infusion. CONCLUSIONS: BM-hMSC-Delta-24 is compatible with a wide variety of microcatheters and medications commonly used in neuroendovascular therapy. Stem cell viability and viral agent activity do not appear to be affected by catheter configuration or injection velocity. Commercially available microcatheters can be used to deliver stem cell neurotherapeutics via intraarterial routes.

12.
Prog Neurol Surg ; 32: 124-151, 2018.
Article in English | MEDLINE | ID: mdl-29990980

ABSTRACT

Stem cells (SC) are the seeds of tissue repair and regeneration that have been extensively investigated as tumor-tropic vectors for gene delivery to solid cancers. SC have an inherent glioma tropism that supports their use as reliable vehicles to deliver therapeutic gene products to brain neoplasms. Several types of adult SC (ASC) have been used to carry antiglioma agents, and neural SC (NSC) and mesenchymal SC (MSC) are the most studied. The therapeutic cargoes that have been tested include secreted proteins, converting enzyme/prodrug suicide combinations, oncolytic viruses, antibodies, and nanoparticles. Some of these preclinical studies have advanced to phase I clinical trials. Use of SC as carriers to deliver various antitumor agents could become a valuable therapeutic option for glioma patients in the future.


Subject(s)
Antineoplastic Agents/therapeutic use , Brain Neoplasms/therapy , Drug Delivery Systems/methods , Glioma/therapy , Mesenchymal Stem Cell Transplantation/methods , Neural Stem Cells/transplantation , Stem Cell Transplantation/methods , Humans
14.
J Neurosurg ; 128(1): 287-295, 2018 01.
Article in English | MEDLINE | ID: mdl-28362237

ABSTRACT

OBJECTIVE Mesenchymal stem cells (MSCs) have been shown to localize to gliomas after intravascular delivery. Because these cells home to areas of tissue injury, the authors hypothesized that the administration of ionizing radiation (IR) to tumor would enhance the tropism of MSCs to gliomas. Additionally, they sought to identify which radiation-induced factors might attract MSCs. METHODS To assess the effect of IR on MSC migration in vitro, transwell assays using conditioned medium (CM) from an irradiated commercially available glioma cell line (U87) and from irradiated patient-derived glioma stem-like cells (GSCs; GSC7-2 and GSC11) were employed. For in vivo testing, green fluorescent protein (GFP)-labeled MSCs were injected into the carotid artery of nude mice harboring orthotopic U87, GSC7-2, or GSC17 xenografts that were treated with either 0 or 10 Gy of IR, and brain sections were quantitatively analyzed by immunofluorescence for GFP-positive cells. These GSCs were used because GSC7-2 is a weak attractor of MSCs at baseline, whereas GSC17 is a strong attractor. To determine the factors implicated in IR-induced tropism, CM from irradiated GSC7-2 and from GSC11 was assayed with a cytokine array and quantitative ELISA. RESULTS Transwell migration assays revealed statistically significant enhanced MSC migration to CM from irradiated U87, GSC7-2, and GSC11 compared with nonirradiated controls and in a dose-dependent manner. After their intravascular delivery into nude mice harboring orthotopic gliomas, MSCs engrafted more successfully in irradiated U87 (p = 0.036), compared with nonirradiated controls. IR also significantly increased the tropism of MSCs to GSC7-2 xenografts (p = 0.043), which are known to attract MSCs only poorly at baseline (weak-attractor GSCs). Ionizing radiation also increased the engraftment of MSCs in strong-attractor GSC17 xenografts, but these increases did not reach statistical significance. The chemokine CCL2 was released by GSC7-2 and GSC11 after irradiation in a dose-dependent manner and mediated in vitro transwell migration of MSCs. Immunohistochemistry revealed increased CCL2 in irradiated GSC7-2 gliomas near the site of MSC engraftment. CONCLUSIONS Administering IR to gliomas enhances MSC localization, particularly in GSCs that attract MSCs poorly at baseline. The chemokine CCL2 appears to play a crucial role in the IR-induced tropism of MSCs to gliomas.


Subject(s)
Brain Neoplasms/radiotherapy , Glioma/radiotherapy , Mesenchymal Stem Cells/radiation effects , Radiation, Ionizing , Tropism/radiation effects , Animals , Brain Neoplasms/pathology , Brain Neoplasms/physiopathology , Cell Line, Tumor , Cell Movement/radiation effects , Chemokine CCL2/metabolism , Dose-Response Relationship, Radiation , Glioma/pathology , Glioma/physiopathology , Humans , Male , Mesenchymal Stem Cells/pathology , Mesenchymal Stem Cells/physiology , Mice, Nude , Xenograft Model Antitumor Assays
15.
Neuro Oncol ; 20(3): 380-390, 2018 02 19.
Article in English | MEDLINE | ID: mdl-29016843

ABSTRACT

Background: MicroRNAs (miRs) are promising new therapeutics for glioblastoma. However, which miRs are most effective against glioblastomas and how these miRs should be delivered are major unanswered problems. Methods: To identify potent antiglioma miRs, we selected 8 miRs based on a literature search and screened them against a panel of glioma stem cell (GSC) lines, representing all of the glioblastoma subtypes defined by The Cancer Genome Atlas. To address delivery, we tested the hypothesis that ex vivo cultured bone marrow-derived mesenchymal stem cells (MSCs) can package miRs into exosomes and that these engineered exosomes can systemically deliver antiglioma miRs to glioblastomas. Results: Of the screened miRs, we identified miR-124a as the most effective antiglioma agent against GSCs. We then transduced MSCs with lentivirus vectors containing miR-124a and isolated vesicles from the medium. Electron microscopy, western blotting, and Nanosight proved that the isolated vesicles were exosomes. Quantitative PCR documented that these exosomes contained high levels of miR-124a, which was not present in control exosomes. In vitro treatment of GSCs with exosomes containing miR-124a (Exo-miR124) resulted in a significant reduction in viability and clonogenicity of GSCs compared with controls. In vivo treatment of mice harboring intracranial GSC267 with systemically delivered Exo-miR124 resulted in 50% of animals living long term. No evidence of tumor was present on histological analysis of the survivors. Mechanistic studies showed that miR-124a acts by silencing Forkhead box (FOX)A2, resulting in aberrant intracellular lipid accumulation. Conclusion: MSCs can be used as natural biofactories to produce Exo-miR124, which is an effective antiglioma agent worthy of further clinical evaluation.


Subject(s)
Exosomes/genetics , Glioma/prevention & control , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , MicroRNAs/genetics , Animals , Apoptosis , Cell Proliferation , Glioma/genetics , Glioma/pathology , Humans , Male , Mesenchymal Stem Cells/metabolism , Mice , Mice, Nude , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
16.
Cytotherapy ; 19(4): 445-457, 2017 04.
Article in English | MEDLINE | ID: mdl-28233640

ABSTRACT

Mesenchymal stromal cells (MSCs) are a type of adult stem cell that has been exploited for the treatment of a variety of diseases, including cancer. In particular, MSCs have been studied extensively for their ability to treat glioblastoma (GBM), the most common and deadly form of brain cancer in adults. MSCs are attractive therapeutics because they can be obtained relatively easily from patients, are capable of being expanded numerically in vitro, can be easily engineered and are inherently capable of homing to tumors, making them ideal vehicles for delivering biological antitumoral agents. Oncolytic viruses are promising biological therapeutic agents that have been used in the treatment of GBMs, and MSCs are currently being explored as a means of delivering these viruses. Here we review the role of MSCs in the treatment of GBMs, focusing on the intersection of MSCs and oncolytic viruses.


Subject(s)
Brain Neoplasms/therapy , Glioma/therapy , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/virology , Oncolytic Virotherapy/methods , Oncolytic Viruses/metabolism , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Glioblastoma/therapy , Humans , Mesenchymal Stem Cells/metabolism
17.
J Pathol ; 233(3): 308-18, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24604117

ABSTRACT

Ovarian carcinoma is the most lethal gynaecological malignancy. Better understanding of the molecular pathogenesis of this disease and effective targeted therapies are needed to improve patient outcomes. MicroRNAs play important roles in cancer progression and have the potential for use as either therapeutic agents or targets. Studies in other cancers have suggested that miR-506 has anti-tumour activity, but its function has yet to be elucidated. We found that deregulation of miR-506 in ovarian carcinoma promotes an aggressive phenotype. Ectopic over-expression of miR-506 in ovarian cancer cells was sufficient to inhibit proliferation and to promote senescence. We also demonstrated that CDK4 and CDK6 are direct targets of miR-506, and that miR-506 can inhibit CDK4/6-FOXM1 signalling, which is activated in the majority of serous ovarian carcinomas. This newly recognized miR-506-CDK4/6-FOXM1 axis provides further insight into the pathogenesis of ovarian carcinoma and identifies a potential novel therapeutic agent.


Subject(s)
Cell Proliferation , Cellular Senescence , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/metabolism , Forkhead Transcription Factors/metabolism , MicroRNAs/metabolism , Neoplasms, Cystic, Mucinous, and Serous/enzymology , Ovarian Neoplasms/enzymology , 3' Untranslated Regions , Binding Sites , Cell Line, Tumor , Cell Survival , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 6/genetics , Female , Forkhead Box Protein M1 , Forkhead Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , Genotype , Humans , Neoplasms, Cystic, Mucinous, and Serous/genetics , Neoplasms, Cystic, Mucinous, and Serous/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Phenotype , Signal Transduction , Time Factors , Transfection
18.
J Hematol Oncol ; 7: 19, 2014 Mar 05.
Article in English | MEDLINE | ID: mdl-24598126

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) and its reverse process, mesenchymal-to-epithelial transition (MET), play important roles in embryogenesis, stem cell biology, and cancer progression. EMT can be regulated by many signaling pathways and regulatory transcriptional networks. Furthermore, post-transcriptional regulatory networks regulate EMT; these networks include the long non-coding RNA (lncRNA) and microRNA (miRNA) families. Specifically, the miR-200 family, miR-101, miR-506, and several lncRNAs have been found to regulate EMT. Recent studies have illustrated that several lncRNAs are overexpressed in various cancers and that they can promote tumor metastasis by inducing EMT. MiRNA controls EMT by regulating EMT transcription factors or other EMT regulators, suggesting that lncRNAs and miRNA are novel therapeutic targets for the treatment of cancer. Further efforts have shown that non-coding-mediated EMT regulation is closely associated with epigenetic regulation through promoter methylation (e.g., miR-200 or miR-506) and protein regulation (e.g., SET8 via miR-502). The formation of gene fusions has also been found to promote EMT in prostate cancer. In this review, we discuss the post-transcriptional regulatory network that is involved in EMT and MET and how targeting EMT and MET may provide effective therapeutics for human disease.


Subject(s)
Epithelial-Mesenchymal Transition/physiology , MicroRNAs/genetics , RNA Processing, Post-Transcriptional/physiology , RNA, Untranslated/genetics , Animals , Epigenomics , Humans , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...