Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
DNA Repair (Amst) ; 132: 103583, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37871511

ABSTRACT

Eukaryotic DNA has evolved to be enclosed within the nucleus to protect the cellular genome from autoinflammatory responses driven by the immunogenic nature of cytoplasmic DNA. Cyclic GMP-AMP Synthase (cGAS) is the cytoplasmic dsDNA sensor, which upon activation of Stimulator of Interferon Genes (STING), mediates production of pro-inflammatory interferons (IFNs) and interferon stimulated genes (ISGs). However, although this pathway is crucial in detection of viral and microbial genetic material, cytoplasmic DNA is not always of foreign origin. It is now recognised that specifically in genomic instability, a hallmark of cancer, extranuclear material in the form of micronuclei (MN) can be generated as a result of unresolved DNA lesions during mitosis. Activation of cGAS-STING in cancer has been shown to regulate numerous tumour-immune interactions such as acquisition of 'immunologically hot' phenotype which stimulates immune-mediated elimination of transformed cells. Nonetheless, a significant percentage of poorly prognostic cancers is 'immunologically cold'. As this state has been linked with low proportion of tumour-infiltrating lymphocytes (TILs), improving immunogenicity of cold tumours could be clinically relevant by exhibiting synergy with immunotherapy. This review aims to present how inhibition of vital mitotic regulators could provoke cGAS-STING response in cancer and improve the efficacy of current immunotherapy regimens.


Subject(s)
Neoplasms , Humans , Neoplasms/pathology , DNA/metabolism , Cytoplasm/metabolism , Interferons , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism
2.
Nature ; 620(7976): 1080-1088, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37612508

ABSTRACT

Chromosomal instability (CIN) is a driver of cancer metastasis1-4, yet the extent to which this effect depends on the immune system remains unknown. Using ContactTracing-a newly developed, validated and benchmarked tool to infer the nature and conditional dependence of cell-cell interactions from single-cell transcriptomic data-we show that CIN-induced chronic activation of the cGAS-STING pathway promotes downstream signal re-wiring in cancer cells, leading to a pro-metastatic tumour microenvironment. This re-wiring is manifested by type I interferon tachyphylaxis selectively downstream of STING and a corresponding increase in cancer cell-derived endoplasmic reticulum (ER) stress response. Reversal of CIN, depletion of cancer cell STING or inhibition of ER stress response signalling abrogates CIN-dependent effects on the tumour microenvironment and suppresses metastasis in immune competent, but not severely immune compromised, settings. Treatment with STING inhibitors reduces CIN-driven metastasis in melanoma, breast and colorectal cancers in a manner dependent on tumour cell-intrinsic STING. Finally, we show that CIN and pervasive cGAS activation in micronuclei are associated with ER stress signalling, immune suppression and metastasis in human triple-negative breast cancer, highlighting a viable strategy to identify and therapeutically intervene in tumours spurred by CIN-induced inflammation.


Subject(s)
Chromosomal Instability , Disease Progression , Neoplasms , Humans , Benchmarking , Cell Communication , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Melanoma/drug therapy , Melanoma/genetics , Melanoma/immunology , Melanoma/pathology , Tumor Microenvironment , Interferon Type I/immunology , Neoplasm Metastasis , Endoplasmic Reticulum Stress , Signal Transduction , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/pathology
3.
Mol Cancer ; 22(1): 133, 2023 08 12.
Article in English | MEDLINE | ID: mdl-37573301

ABSTRACT

Prostate cancer (PCa) is a common and fatal type of cancer in men. Metastatic PCa (mPCa) is a major factor contributing to its lethality, although the mechanisms remain poorly understood. PTEN is one of the most frequently deleted genes in mPCa. Here we show a frequent genomic co-deletion of PTEN and STAT3 in liquid biopsies of patients with mPCa. Loss of Stat3 in a Pten-null mouse prostate model leads to a reduction of LKB1/pAMPK with simultaneous activation of mTOR/CREB, resulting in metastatic disease. However, constitutive activation of Stat3 led to high LKB1/pAMPK levels and suppressed mTORC1/CREB pathway, preventing mPCa development. Metformin, one of the most widely prescribed therapeutics against type 2 diabetes, inhibits mTORC1 in liver and requires LKB1 to mediate glucose homeostasis. We find that metformin treatment of STAT3/AR-expressing PCa xenografts resulted in significantly reduced tumor growth accompanied by diminished mTORC1/CREB, AR and PSA levels. PCa xenografts with deletion of STAT3/AR nearly completely abrogated mTORC1/CREB inhibition mediated by metformin. Moreover, metformin treatment of PCa patients with high Gleason grade and type 2 diabetes resulted in undetectable mTORC1 levels and upregulated STAT3 expression. Furthermore, PCa patients with high CREB expression have worse clinical outcomes and a significantly increased risk of PCa relapse and metastatic recurrence. In summary, we have shown that STAT3 controls mPCa via LKB1/pAMPK/mTORC1/CREB signaling, which we have identified as a promising novel downstream target for the treatment of lethal mPCa.


Subject(s)
Diabetes Mellitus, Type 2 , Metformin , Prostatic Neoplasms , Animals , Humans , Male , Mice , AMP-Activated Protein Kinases/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Metformin/pharmacology , Neoplasm Recurrence, Local , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
4.
Biochem Soc Trans ; 51(2): 539-555, 2023 04 26.
Article in English | MEDLINE | ID: mdl-36876871

ABSTRACT

Chromosomal instability (CIN) is a hallmark of cancer that drives tumour evolution. It is now recognised that CIN in cancer leads to the constitutive production of misplaced DNA in the form of micronuclei and chromatin bridges. These structures are detected by the nucleic acid sensor cGAS, leading to the production of the second messenger 2'3'-cGAMP and activation of the critical hub of innate immune signalling STING. Activation of this immune pathway should instigate the influx and activation of immune cells, resulting in the eradication of cancer cells. That this does not universally occur in the context of CIN remains an unanswered paradox in cancer. Instead, CIN-high cancers are notably adept at immune evasion and are highly metastatic with typically poor outcomes. In this review, we discuss the diverse facets of the cGAS-STING signalling pathway, including emerging roles in homeostatic processes and their intersection with genome stability regulation, its role as a driver of chronic pro-tumour inflammation, and crosstalk with the tumour microenvironment, which may collectively underlie its apparent maintenance in cancers. A better understanding of the mechanisms whereby this immune surveillance pathway is commandeered by chromosomally unstable cancers is critical to the identification of new vulnerabilities for therapeutic exploitation.


Subject(s)
Chromosomal Instability , Neoplasms , Humans , Immunity, Innate/genetics , Inflammation , Neoplasms/genetics , Neoplasms/metabolism , Nucleotidyltransferases , Signal Transduction , Tumor Microenvironment
5.
Trends Cancer ; 8(3): 174-189, 2022 03.
Article in English | MEDLINE | ID: mdl-35000881

ABSTRACT

Genomic instability and inflammation are intricately connected hallmark features of cancer. DNA repair defects due to BRCA1/2 mutation instigate immune signaling through the cGAS/STING pathway. The subsequent inflammatory signaling provides both tumor-suppressive as well as tumor-promoting traits. To prevent clearance by the immune system, genomically instable cancer cells need to adapt to escape immune surveillance. Currently, it is unclear how genomically unstable cancers, including BRCA1/2-mutant tumors, are rewired to escape immune clearance. Here, we summarize the mechanisms by which genomic instability triggers inflammatory signaling and describe adaptive mechanisms by which cancer cells can 'fly under the radar' of the immune system. Additionally, we discuss how therapeutic activation of the immune system may improve treatment of genomically instable cancers.


Subject(s)
Neoplasms , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , DNA Repair/genetics , Genomic Instability , Humans , Inflammation/genetics , Neoplasms/therapy , Signal Transduction/genetics
6.
Br J Cancer ; 126(2): 247-258, 2022 02.
Article in English | MEDLINE | ID: mdl-34728791

ABSTRACT

BACKGROUND: The DNA-damage immune-response (DDIR) signature is an immune-driven gene expression signature retrospectively validated as predicting response to anthracycline-based therapy. This feasibility study prospectively evaluates the use of this assay to predict neoadjuvant chemotherapy response in early breast cancer. METHODS: This feasibility study assessed the integration of a novel biomarker into clinical workflows. Tumour samples were collected from patients receiving standard of care neoadjuvant chemotherapy (FEC + /-taxane and anti-HER2 therapy as appropriate) at baseline, mid- and post-chemotherapy. Baseline DDIR signature scores were correlated with pathological treatment response. RNA sequencing was used to assess chemotherapy/response-related changes in biologically linked gene signatures. RESULTS: DDIR signature reports were available within 14 days for 97.8% of 46 patients (13 TNBC, 16 HER2 + ve, 27 ER + HER2-ve). Positive scores predicted response to treatment (odds ratio 4.67 for RCB 0-1 disease (95% CI 1.13-15.09, P = 0.032)). DDIR positivity correlated with immune infiltration and upregulated immune-checkpoint gene expression. CONCLUSIONS: This study validates the DDIR signature as predictive of response to neoadjuvant chemotherapy which can be integrated into clinical workflows, potentially identifying a subgroup with high sensitivity to anthracycline chemotherapy. Transcriptomic data suggest induction with anthracycline-containing regimens in immune restricted, "cold" tumours may be effective for immune priming. TRIAL REGISTRATION: Not applicable (non-interventional study). CRUK Internal Database Number 14232.


Subject(s)
Breast Neoplasms/immunology , Bridged-Ring Compounds/therapeutic use , DNA Damage , Membrane Proteins/metabolism , Neoadjuvant Therapy/methods , Neoplasm Recurrence, Local/immunology , Nucleotidyltransferases/metabolism , Taxoids/therapeutic use , Adult , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/genetics , Biomarkers, Tumor/immunology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Membrane Proteins/genetics , Middle Aged , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Nucleotidyltransferases/genetics , Treatment Outcome
7.
NPJ Breast Cancer ; 7(1): 81, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34172750

ABSTRACT

STING signaling in cancer is a crucial component of response to immunotherapy and other anti-cancer treatments. Currently, there is no robust method of measuring STING activation in cancer. Here, we describe an immunohistochemistry-based assay with digital pathology assessment of STING in tumor cells. Using this novel approach in estrogen receptor-positive (ER+) and ER- breast cancer, we identify perinuclear-localized expression of STING (pnSTING) in ER+ cases as an independent predictor of good prognosis, associated with immune cell infiltration and upregulation of immune checkpoints. Tumors with low pnSTING are immunosuppressed with increased infiltration of "M2"-polarized macrophages. In ER- disease, pnSTING does not appear to have a significant prognostic role with STING uncoupled from interferon responses. Importantly, a gene signature defining low pnSTING expression is predictive of poor prognosis in independent ER+ datasets. Low pnSTING is associated with chromosomal instability, MYC amplification and mTOR signaling, suggesting novel therapeutic approaches for this subgroup.

8.
Cancer Discov ; 11(6): 1368-1397, 2021 06.
Article in English | MEDLINE | ID: mdl-33811048

ABSTRACT

Harnessing the immune system to treat cancer through inhibitors of CTLA4 and PD-L1 has revolutionized the landscape of cancer. Rational combination strategies aim to enhance the antitumor effects of immunotherapies, but require a deep understanding of the mechanistic underpinnings of the immune system and robust preclinical and clinical drug development strategies. We review the current approved immunotherapy combinations, before discussing promising combinatorial approaches in clinical trials and detailing innovative preclinical model systems being used to develop rational combinations. We also discuss the promise of high-order immunotherapy combinations, as well as novel biomarker and combinatorial trial strategies. SIGNIFICANCE: Although immune-checkpoint inhibitors are approved as dual checkpoint strategies, and in combination with cytotoxic chemotherapy and angiogenesis inhibitors for multiple cancers, patient benefit remains limited. Innovative approaches are required to guide the development of novel immunotherapy combinations, ranging from improvements in preclinical tumor model systems to biomarker-driven trial strategies.


Subject(s)
Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/drug therapy , Drug Development , Drug Therapy, Combination , Humans , Immune Checkpoint Inhibitors/administration & dosage , Immunotherapy
9.
Cancer Discov ; 11(5): 1212-1227, 2021 05.
Article in English | MEDLINE | ID: mdl-33372007

ABSTRACT

Cytosolic DNA is characteristic of chromosomally unstable metastatic cancer cells, resulting in constitutive activation of the cGAS-STING innate immune pathway. How tumors co-opt inflammatory signaling while evading immune surveillance remains unknown. Here, we show that the ectonucleotidase ENPP1 promotes metastasis by selectively degrading extracellular cGAMP, an immune-stimulatory metabolite whose breakdown products include the immune suppressor adenosine. ENPP1 loss suppresses metastasis, restores tumor immune infiltration, and potentiates response to immune checkpoint blockade in a manner dependent on tumor cGAS and host STING. Conversely, overexpression of wild-type ENPP1, but not an enzymatically weakened mutant, promotes migration and metastasis, in part through the generation of extracellular adenosine, and renders otherwise sensitive tumors completely resistant to immunotherapy. In human cancers, ENPP1 expression correlates with reduced immune cell infiltration, increased metastasis, and resistance to anti-PD-1/PD-L1 treatment. Thus, cGAMP hydrolysis by ENPP1 enables chromosomally unstable tumors to transmute cGAS activation into an immune-suppressive pathway. SIGNIFICANCE: Chromosomal instability promotes metastasis by generating chronic tumor inflammation. ENPP1 facilitates metastasis and enables tumor cells to tolerate inflammation by hydrolyzing the immunotransmitter cGAMP, preventing its transfer from cancer cells to immune cells.This article is highlighted in the In This Issue feature, p. 995.


Subject(s)
Neoplasm Metastasis , Neoplasms/therapy , Nucleotides, Cyclic/metabolism , Tumor Escape , Animals , Humans , Hydrolysis , Immunotherapy , Mice , Mice, Inbred BALB C , Neoplasms/metabolism , Neoplasms/pathology
10.
Br J Cancer ; 124(3): 581-586, 2021 02.
Article in English | MEDLINE | ID: mdl-33100327

ABSTRACT

BACKGROUND: The Phase 2 SCALOP trial compared gemcitabine with capecitabine-based consolidation chemoradiotherapy (CRT) in locally advanced pancreatic cancer (LAPC). METHODS: Thirty-five systematically identified circulating biomarkers were analysed in plasma samples from 60 patients enroled in SCALOP. Each was measured in triplicate at baseline (prior to three cycles of gemcitabine-capecitabine induction chemotherapy) and, for a subset, prior to CRT. Association with overall survival (OS) was determined using univariable Cox regression and optimal thresholds delineating low to high values identified using time-dependent ROC curves. Independence from known prognostic factors was assessed using Spearman correlation and the Wilcoxon rank sum test prior to multivariable Cox regression modelling including independent biomarkers and known prognostic factors. RESULTS: Baseline circulating levels of C-C motif chemokine ligand 5 (CCL5) were significantly associated with OS, independent of other clinicopathological characteristics. Patients with low circulating CCL5 (CCL5low) had a median OS of 18.5 (95% CI 11.76-21.32) months compared to 11.3 (95% CI 9.86-15.51) months in CCL5high; hazard ratio 1.95 (95% CI 1.04-8.65; p = 0.037). CONCLUSIONS: CCL5 is an independent prognostic biomarker in LAPC. Given the known role of CCL5 in tumour invasion, metastasis and the induction of an immunosuppressive micro-environment, targeting of CCL5-mediated pathways may offer therapeutic potential in pancreatic cancer. CLINICAL TRIAL REGISTRATION: The SCALOP trial was registered with ISRCTN, number 96169987 (registered 29 May 2008).


Subject(s)
Biomarkers, Tumor/blood , Capecitabine/therapeutic use , Chemokine CCL5/blood , Chemoradiotherapy/methods , Deoxycytidine/analogs & derivatives , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/therapy , Aged , Cytokines/blood , Deoxycytidine/therapeutic use , Female , Humans , Induction Chemotherapy , Male , Middle Aged , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , ROC Curve , Regression Analysis , Treatment Outcome , Gemcitabine
11.
Br J Cancer ; 123(7): 1089-1100, 2020 09.
Article in English | MEDLINE | ID: mdl-32641865

ABSTRACT

BACKGROUND: Radiotherapy enhances innate and adaptive anti-tumour immunity. It is unclear whether this effect may be harnessed by combining immunotherapy with radiotherapy fractions used to treat prostate cancer. We investigated tumour immune microenvironment responses of pre-clinical prostate cancer models to radiotherapy. Having defined this landscape, we tested whether radiotherapy-induced tumour growth delay could be enhanced with anti-PD-L1. METHODS: Hypofractionated radiotherapy was delivered to TRAMP-C1 and MyC-CaP flank allografts. Tumour growth delay, tumour immune microenvironment flow-cytometry, and immune gene expression were analysed. TRAMP-C1 allografts were then treated with 3 × 5 Gy ± anti-PD-L1. RESULTS: 3 × 5 Gy caused tumour growth delay in TRAMP-C1 and MyC-CaP. Tumour immune microenvironment changes in TRAMP-C1 at 7 days post-radiotherapy included increased tumour-associated macrophages and dendritic cells and upregulation of PD-1/PD-L1, CD8+ T-cell, dendritic cell, and regulatory T-cell genes. At tumour regrowth post-3 × 5 Gy the tumour immune microenvironment flow-cytometry was similar to control tumours, however CD8+, natural killer and dendritic cell gene transcripts were reduced. PD-L1 inhibition plus 3 × 5 Gy in TRAMP-C1 did not enhance tumour growth delay versus monotherapy. CONCLUSION: 3 × 5 Gy hypofractionated radiotherapy can result in tumour growth delay and immune cell changes in allograft prostate cancer models. Adjuncts beyond immunomodulation may be necessary to improve the radiotherapy-induced anti-tumour response.


Subject(s)
Immune Checkpoint Inhibitors/therapeutic use , Prostatic Neoplasms/therapy , Radiation Dose Hypofractionation , Tumor Microenvironment , Animals , B7-H1 Antigen/analysis , Cell Line, Tumor , Combined Modality Therapy , Disease Models, Animal , Histocompatibility Antigens Class I/analysis , Humans , Male , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Prostatic Neoplasms/immunology , Prostatic Neoplasms/pathology
12.
J Clin Oncol ; 37(36): 3484-3492, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31657982

ABSTRACT

PURPOSE: To independently validate two biomarkers, a 44-gene DNA damage immune response (DDIR) signature and stromal tumor-infiltrating lymphocytes (sTILs), as prognostic markers in patients with triple-negative breast cancer (TNBC) treated with adjuvant doxorubicin (A) and cyclophosphamide (C) in SWOG 9313. METHODS: Four hundred twenty-five centrally determined patient cases with TNBC from S9313 were identified. DDIR signature was performed on RNA isolated from formalin-fixed paraffin-embedded tumor tissue, and samples were classified as DDIR negative or positive using predefined cutoffs. Evaluation of sTILs was performed as described previously. Markers were tested for prognostic value for disease-free survival (DFS) and overall survival (OS) using Cox regression models adjusted for treatment assignment, nodal status, and tumor size. RESULTS: Among 425 patients with TNBC, 33% were node positive. DDIR was tested successfully in 90% of patients (381 of 425), 62% of which were DDIR signature positive. DDIR signature positivity was associated with improved DFS (hazard ratio [HR], 0.67; 95% CI, 0.48 to 0.92; P = .015) and OS (HR, 0.61; 95% CI, 0.43 to 0.89; P = .010). sTILs density assessment was available in 99% of patients and was associated with improved DFS (HR, 0.70; 95% CI, 0.51 to 0.96; P = .026 for sTILs density ≥ 20% v < 20%) and OS (HR, 0.59; 95% CI, 0.41 to 0.85; P = .004 for sTILs density ≥ 20% v < 20%). DDIR signature score and sTILs density were moderately correlated (r = 0.60), which precluded statistical significance for DFS in a joint model. Three-year DFS and OS in a subgroup of patients with DDIR positivity and T1c/T2N0 disease were 88% and 94%, respectively. CONCLUSION: The prognostic role of sTILs and DDIR in early-stage TNBC was confirmed. DDIR signature conferred improved prognosis in two thirds of patients with TNBC treated with adjuvant AC. DDIR signature has the potential to stratify outcome and to identify patients with less projected benefit after AC chemotherapy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/immunology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/immunology , Adult , Aged , Cyclophosphamide/therapeutic use , DNA Damage , Disease-Free Survival , Doxorubicin/therapeutic use , Female , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Middle Aged , Prognosis , Transcriptome , Triple Negative Breast Neoplasms/mortality
13.
J Oncol ; 2019: 4325105, 2019.
Article in English | MEDLINE | ID: mdl-31320901

ABSTRACT

Historically the development of anticancer treatments has been focused on their effect on tumor cells alone. However, newer treatments have shifted attention to targets on immune cells, resulting in dramatic responses. The effect of DNA repair deficiency on the microenvironment remains an area of key interest. Moreover, established therapies such as DNA damaging treatments such as chemotherapy and PARP inhibitors further modify the tumor microenvironment. Here we describe DNA repair pathways in breast cancer and activation of innate immune pathways in DNA repair deficiency, in particular, the STING (STimulator of INterferon Genes) pathway. Breast tumors with DNA repair deficiency are associated with upregulation of immune checkpoints including PD-L1 (Programmed Death Ligand-1) and may represent a target population for single agent or combination immunotherapy treatment.

14.
Gut ; 68(11): 1918-1927, 2019 11.
Article in English | MEDLINE | ID: mdl-30852560

ABSTRACT

OBJECTIVE: Current strategies to guide selection of neoadjuvant therapy in oesophageal adenocarcinoma (OAC) are inadequate. We assessed the ability of a DNA damage immune response (DDIR) assay to predict response following neoadjuvant chemotherapy in OAC. DESIGN: Transcriptional profiling of 273 formalin-fixed paraffin-embedded prechemotherapy endoscopic OAC biopsies was performed. All patients were treated with platinum-based neoadjuvant chemotherapy and resection between 2003 and 2014 at four centres in the Oesophageal Cancer Clinical and Molecular Stratification consortium. CD8 and programmed death ligand 1 (PD-L1) immunohistochemical staining was assessed in matched resection specimens from 126 cases. Kaplan-Meier and Cox proportional hazards regression analysis were applied according to DDIR status for recurrence-free survival (RFS) and overall survival (OS). RESULTS: A total of 66 OAC samples (24%) were DDIR positive with the remaining 207 samples (76%) being DDIR negative. DDIR assay positivity was associated with improved RFS (HR: 0.61; 95% CI 0.38 to 0.98; p=0.042) and OS (HR: 0.52; 95% CI 0.31 to 0.88; p=0.015) following multivariate analysis. DDIR-positive patients had a higher pathological response rate (p=0.033), lower nodal burden (p=0.026) and reduced circumferential margin involvement (p=0.007). No difference in OS was observed according to DDIR status in an independent surgery-alone dataset.DDIR-positive OAC tumours were also associated with the presence of CD8+ lymphocytes (intratumoural: p<0.001; stromal: p=0.026) as well as PD-L1 expression (intratumoural: p=0.047; stromal: p=0.025). CONCLUSION: The DDIR assay is strongly predictive of benefit from DNA-damaging neoadjuvant chemotherapy followed by surgical resection and is associated with a proinflammatory microenvironment in OAC.


Subject(s)
Adenocarcinoma/immunology , Adenocarcinoma/therapy , Antineoplastic Agents/therapeutic use , DNA Damage/immunology , Esophageal Neoplasms/immunology , Esophageal Neoplasms/therapy , Esophagectomy , Neoadjuvant Therapy , Adenocarcinoma/mortality , Aged , B7-H1 Antigen , CD8-Positive T-Lymphocytes , Chemotherapy, Adjuvant , Disease-Free Survival , Esophageal Neoplasms/mortality , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Survival Rate , Treatment Outcome
15.
J Oncol ; 2018: 2937012, 2018.
Article in English | MEDLINE | ID: mdl-30651729

ABSTRACT

The role of PD-L1 as a prognostic and predictive biomarker is an area of great interest. However, there is a lack of consensus on how to deliver PD-L1 as a clinical biomarker. At the heart of this conundrum is the subjective scoring of PD-L1 IHC in most studies to date. Current standard scoring systems involve separation of epithelial and inflammatory cells and find clinical significance in different percentages of expression, e.g., above or below 1%. Clearly, an objective, reproducible and accurate approach to PD-L1 scoring would bring a degree of necessary consistency to this landscape. Using a systematic comparison of technologies and the application of QuPath, a digital pathology platform, we show that high PD-L1 expression is associated with improved clinical outcome in Triple Negative breast cancer in the context of standard of care (SoC) chemotherapy, consistent with previous findings. In addition, we demonstrate for the first time that high PD-L1 expression is also associated with better outcome in ER- disease as a whole including HER2+ breast cancer. We demonstrate the influence of antibody choice on quantification and clinical impact with the Ventana antibody (SP142) providing the most robust assay in our hands. Through sampling different regions of the tumour, we show that tumour rich regions display the greatest range of PD-L1 expression and this has the most clinical significance compared to stroma and lymphoid rich areas. Furthermore, we observe that both inflammatory and epithelial PD-L1 expression are associated with improved survival in the context of chemotherapy. Moreover, as seen with PD-L1 inhibitor studies, a low threshold of PD-L1 expression stratifies patient outcome. This emphasises the importance of using digital pathology and precise biomarker quantitation to achieve accurate and reproducible scores that can discriminate low PD-L1 expression.

16.
J Natl Cancer Inst ; 109(1)2017 01.
Article in English | MEDLINE | ID: mdl-27707838

ABSTRACT

Background: Previously we identified a DNA damage response-deficient (DDRD) molecular subtype within breast cancer. A 44-gene assay identifying this subtype was validated as predicting benefit from DNA-damaging chemotherapy. This subtype was defined by interferon signaling. In this study, we address the mechanism of this immune response and its possible clinical significance. Methods: We used immunohistochemistry (IHC) to characterize immune infiltration in 184 breast cancer samples, of which 65 were within the DDRD subtype. Isogenic cell lines, which represent DDRD-positive and -negative, were used to study the effects of chemokine release on peripheral blood mononuclear cell (PBMC) migration and the mechanism of immune signaling activation. Finally, we studied the association between the DDRD subtype and expression of the immune-checkpoint protein PD-L1 as detected by IHC. All statistical tests were two-sided. Results: We found that DDRD breast tumors were associated with CD4+ and CD8+ lymphocytic infiltration (Fisher's exact test P < .001) and that DDRD cells expressed the chemokines CXCL10 and CCL5 3.5- to 11.9-fold more than DNA damage response-proficient cells (P < .01). Conditioned medium from DDRD cells statistically significantly attracted PBMCs when compared with medium from DNA damage response-proficient cells (P < .05), and this was dependent on CXCL10 and CCL5. DDRD cells demonstrated increased cytosolic DNA and constitutive activation of the viral response cGAS/STING/TBK1/IRF3 pathway. Importantly, this pathway was activated in a cell cycle-specific manner. Finally, we demonstrated that S-phase DNA damage activated expression of PD-L1 in a STING-dependent manner. Conclusions: We propose a novel mechanism of immune infiltration in DDRD tumors, independent of neoantigen production. Activation of this pathway and associated PD-L1 expression may explain the paradoxical lack of T-cell-mediated cytotoxicity observed in DDRD tumors. We provide a rationale for exploration of DDRD in the stratification of patients for immune checkpoint-based therapies.


Subject(s)
Breast Neoplasms/immunology , DNA Damage/immunology , DNA/analysis , Immunity, Innate , Leukocytes, Mononuclear/physiology , Lymphocytes, Tumor-Infiltrating , Membrane Proteins/metabolism , B7-H1 Antigen/metabolism , Breast Neoplasms/genetics , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Chemokine CCL5/metabolism , Chemokine CXCL10/metabolism , Chemotaxis/drug effects , Culture Media, Conditioned/pharmacology , Cytosol/chemistry , Female , Humans , Immunohistochemistry , Interferon Regulatory Factor-3/metabolism , Protein Serine-Threonine Kinases/metabolism , S Phase/genetics , Signal Transduction
17.
Oncologist ; 21(5): 586-93, 2016 05.
Article in English | MEDLINE | ID: mdl-27022037

ABSTRACT

UNLABELLED: : High-grade serous ovarian cancer is characterized by genomic instability, with one half of all tumors displaying defects in the important DNA repair pathway of homologous recombination. Given the action of poly(ADP-ribose) polymerase (PARP) inhibitors in targeting tumors with deficiencies in this repair pathway by loss of BRCA1/2, ovarian tumors could be an attractive population for clinical application of this therapy. PARP inhibitors have moved into clinical practice in the past few years, with approval from the Food and Drug Administration (FDA) and European Medicines Agency (EMA) within the past 2 years. The U.S. FDA approval of olaparib applies to fourth line treatment in germline BRCA-mutant ovarian cancer, and European EMA approval to olaparib maintenance in both germline and somatic BRCA-mutant platinum-sensitive ovarian cancer. In order to widen the ovarian cancer patient population that would benefit from PARP inhibitors, predictive biomarkers based on a clear understanding of the mechanism of action are required. Additionally, a better understanding of the toxicity profile is needed if PARP inhibitors are to be used in the curative, rather than the palliative, setting. We reviewed the development of PARP inhibitors in phase I-III clinical trials, including combination trials of PARP inhibitors and chemotherapy/antiangiogenics, the approval for these agents, the mechanisms of resistance, and the outstanding issues, including the development of biomarkers and the rate of long-term hematologic toxicities with these agents. IMPLICATIONS FOR PRACTICE: The poly(ADP-ribose) polymerase (PARP) inhibitor olaparib has recently received approval from the Food and Drug Administration (FDA) and European Medicines Agency (EMA), with a second agent (rucaparib) likely to be approved in the near future. However, the patient population with potential benefit from PARP inhibitors is likely wider than that of germline BRCA mutation-associated disease, and biomarkers are in development to enable the selection of patients with the potential for clinical benefit from these agents. Questions remain regarding the toxicities of PARP inhibitors, limiting the use of these agents in the prophylactic or adjuvant setting until more information is available. The indications for olaparib as indicated by the FDA and EMA are reviewed.


Subject(s)
Ovarian Neoplasms/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Biomarkers , Clinical Trials as Topic , Drug Resistance, Neoplasm , Female , Genes, BRCA1 , Genes, BRCA2 , Humans , Mutation , Ovarian Neoplasms/genetics , Phthalazines/therapeutic use , Piperazines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...