Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Rev Lett ; 122(6): 065001, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30822084

ABSTRACT

The first rapid tokamak discharge shutdown using dispersive core payload deposition with shell pellets has been achieved in the DIII-D tokamak. Shell pellets are being investigated as a possible new path toward achieving tokamak disruption mitigation with both low conducted wall heat loads and slow current quench. Conventional disruption mitigation injects radiating impurities into the outer edge of the tokamak plasma, which tends to result in poor impurity assimilation and creates a strong edge cooling and outward heat flow, thus requiring undesirable high-Z impurities to achieve low conducted heat loads. The shell pellet technique aims to produce a hollow temperature profile by using a thin, low-ablation shell surrounding a dispersive payload, giving a greatly increased impurity ablation (and radiation) rate when the payload is released in the plasma core. This principle was demonstrated successfully using 3.6 mm outer diameter, 40 µm thickness diamond shells holding boron powder. The pellets caused rapid (<10 ms) discharge shutdown with low conducted divertor heat fluence (∼0.1 MJ/m^{2}). Confirmation of massive release of the boron powder payload into the plasma core was obtained spectroscopically. Some evidence for the formation of a hollow temperature profile during the shutdown was observed. These first results open a new avenue for disruption mitigation research, hopefully enabling development of highly effective methods of avoiding disruption wall damage in future reactor-scale tokamaks.

2.
Phys Rev Lett ; 110(24): 245001, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-25165932

ABSTRACT

High repetition rate injection of deuterium pellets from the low-field side (LFS) of the DIII-D tokamak is shown to trigger high-frequency edge-localized modes (ELMs) at up to 12× the low natural ELM frequency in H-mode deuterium plasmas designed to match the ITER baseline configuration in shape, normalized beta, and input power just above the H-mode threshold. The pellet size, velocity, and injection location were chosen to limit penetration to the outer 10% of the plasma. The resulting perturbations to the plasma density and energy confinement time are thus minimal (<10%). The triggered ELMs occur at much lower normalized pedestal pressure than the natural ELMs, suggesting that the pellet injection excites a localized high-n instability. Triggered ELMs produce up to 12× lower energy and particle fluxes to the divertor, and result in a strong decrease in plasma core impurity density. These results show for the first time that shallow, LFS pellet injection can dramatically accelerate the ELM cycle and reduce ELM energy fluxes on plasma facing components, and is a viable technique for real-time control of ELMs in ITER.

3.
Phys Rev Lett ; 94(12): 125002, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15903925

ABSTRACT

The first complete set of time-dependent equations describing the cross-field drift of ionized pellet ablation matter in tokamak plasma caused by polarization in the nonuniform magnetic field has been developed and solved numerically. Important new features impacting the drift dynamics have been identified, including the effect of pressure profile variations in the tokamak plasma, curvature drive by near-sonic field-aligned (parallel) flows, and the rotational transform of the magnetic field lines, and are considered from the viewpoint of the parallel vorticity equation. These new features are necessary to obtain favorable quantitative agreement between theory and experimental fuel deposition profiles for both inner and outer wall launched pellet injection cases on the DIII-D tokamak.

4.
Phys Rev Lett ; 89(5): 055001, 2002 Jul 29.
Article in English | MEDLINE | ID: mdl-12144446

ABSTRACT

High-pressure gas-jet injection of neon and argon is shown to be a simple and robust method to mitigate the deleterious effects of disruptions on the DIII-D tokamak. The gas jet penetrates to the central plasma at its sonic velocity. The deposited species dissipates >95% of the plasma by radiation and substantially reduces mechanical stresses on the vessel caused by poloidal halo currents. The gas-jet species-charge distribution can include >50% fraction neutral species which inhibits runaway electrons. The favorable scaling of this technique to burning fusion plasmas is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL