Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 2951, 2024 02 05.
Article in English | MEDLINE | ID: mdl-38316831

ABSTRACT

Robertsonian translocations, specifically rob(1;29) translocation, have reportedly been the most prevalent chromosomal abnormalities in cattle, affecting various breeds and leading to a decrease in fertility and reproductive value. Currently, the identification of rob(1;29) carriers relies on cytogenetic analysis that has limitations in terms of accessibility, cost, and sample requirements. To address these limitations, a novel genomic biomarker was developed in this study for the rapid and precise identification of rob(1;29) carriers. Using q-PCR, a specific copy number variation associated with translocation was targeted, which effectively distinguished between wild-type, homozygous and heterozygous carriers. Crucially, the biomarker can be applied to DNA extracted from various biological matrices, such as semen, embryos, oocytes, milk, saliva, coat, and muscle, and it is compatible with fresh, refrigerated, or frozen samples. Furthermore, this approach offers significant reductions in cost compared to those associated with traditional cytogenetic analysis and provides results within a short turnaround time. The successful development of this genomic biomarker has considerable potential for widespread adoption in screening programs. It facilitates timely identification and management of rob(1;29) carriers while mitigating economic losses and preserving genetic integrity in bovine populations.


Subject(s)
DNA Copy Number Variations , Translocation, Genetic , Cattle/genetics , Animals , Chromosome Aberrations , Cytogenetic Analysis , Genomics
2.
Sci Rep ; 14(1): 2057, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38267480

ABSTRACT

Robertsonian translocation 1;29 (rob(1;29)), a widespread chromosomal anomaly affecting cattle fertility, appears to have originated from a common ancestor. This study utilizes routine SNP data to investigate the chromosomal region associated with rob(1;29) and confirm the presence of a shared haplotype among carriers in diverse Italian breeds. Three datasets were employed: Dataset 1 included 151 subjects from 5 beef cattle breeds genotyped with the GGP Bovine 33 k SNP chip; Dataset 2 encompassed 800 subjects from 32 Italian breeds genotyped with the Illumina 50 k SNP chip, sourced from the BOVITA dataset; Dataset 3 combined Dataset 2 with 21 karyologically tested subjects from breeds with a high carrier frequency, genotyped using the Affymetrix 65 K SNP chip. FST analysis pinpointed a distinctive genomic region on the first six Mb of BTA29, the centromeric region involved in the translocation. Haplotype comparisons within this non-recombining region revealed a common haplotype shared among all carriers, supporting the theory of a common ancestor. Principal component and haplotype analysis allowed clear differentiation of rob(1;29) homozygous and heterozygous carriers. Expanding to Dataset 2 revealed rob(1;29) carriers in unexpected breeds, all sharing the same ancestral haplotype. Notably, previously untested breeds, including Cinisara, exhibited a high carrier prevalence (nearly 50%), confirmed by karyological analysis. This study validates the presence of a shared haplotype among all identified rob(1;29) carriers, reinforcing the common ancestor theory as the origin of this translocation's spread throughout the cattle population. Furthermore, it underscores the potential of SNP data analysis as a rapid, accurate, and cost-effective tool for broad rob(1;29) screening, given the translocation's consistent nature across all analyzed breeds.


Subject(s)
Breeding , Centromere , Cattle/genetics , Humans , Animals , Haplotypes , Genotype , Translocation, Genetic , Italy
3.
Genes (Basel) ; 14(11)2023 Nov 12.
Article in English | MEDLINE | ID: mdl-38003010

ABSTRACT

Disorders of sexual development (DSDs) encompass a group of congenital conditions associated with atypical development of internal and external genital structures. Among those with DSDs are 46,XX males, whose condition mainly arises due to the translocation of SRY onto an X chromosome or an autosome. In the few SRY-negative 46,XX males, overexpression of other pro-testis genes or failure of pro-ovarian/anti-testis genes may be involved, even if a non-negligible number of cases remain unexplained. A three-year-old boy with an SRY-negative 46,XX karyotype showed a normal male phenotype and normal prepubertal values for testicular hormones. A heterozygous de novo in tandem duplication of 50,221 bp, which encompassed exons 2 and 3 of the Doublesex and Mab-3-related transcription factor 1 (DMRT1) gene, was detected using MPLA, CGH-array analysis, and Sanger sequencing. Both breakpoints were in the intronic regions, and this duplication did not stop or shift the coding frame. Additional pathogenic or uncertain variants were not found in a known pro-testis/anti-ovary gene cascade using a custom NGS panel and whole genome sequencing. The duplication may have allowed DMRT1 to escape the transcriptional repression that normally occurs in 46,XX fetal gonads and thus permitted the testicular determination cascade to switch on. So far, no case of SRY-negative 46,XX DSD with alterations in DMRT1 has been described.


Subject(s)
Testis , Transcription Factors , Humans , Male , Child, Preschool , Transcription Factors/genetics , Gonads , Sexual Development/genetics , Karyotyping
4.
Animals (Basel) ; 13(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37835624

ABSTRACT

This study presents a novel approach that combines next-generation sequencing (NGS) and cytogenetic technologies for identifying chromosomes involved in chromosomal anomalies. This research focuses on a chromosome anomaly discovered in male Alpine Grey cattle, as well as two previously reported cases of reciprocal translocations (rcps), namely rcp(9;11) and rcp(4;7). Abnormal chromosomes from Alpine Grey cattle were microdissected from conventional preparations, and the amplified products were sequenced using NGS. The sequencing reads were then mapped to the reference genome, and the leverage effect was calculated to identify abnormal reads/Mb values. The result revealed the presence of rob(26;29), which was further confirmed through traditional cytogenetic analyses such as Giemsa staining, CBA-banding, RBA-banding, and FISH techniques. Furthermore, the feasibility of this approach on preserved metaphases was demonstrated through analysis of old slides from previously characterized cases. The study highlights the challenges involved in identifying and characterizing chromosomal aberrations in bovine species and offers a potential solution for analyzing historical anomalies when fresh blood material is unavailable. The combination of NGS and cytogenetic techniques provides a cost-effective and reliable approach for characterizing chromosomal anomalies in various species, including those identified before the availability of modern banding technologies and FISH mapping using specific molecular markers.

5.
Genes (Basel) ; 14(9)2023 08 31.
Article in English | MEDLINE | ID: mdl-37761884

ABSTRACT

Parthenogenesis is an asexual form of reproduction, normally present in various animal and plant species, in which an embryo is generated from a single gamete. Currently, there are some species for which parthenogenesis is supposed but not confirmed, and the mechanisms that activate it are not well understood. A 10-year-old, wild-caught female ball python (Python regius) laid four eggs without any prior contact with a male. The eggs were not incubated and, after 3 days, were submitted to the University of Parma for analysis due to the suspicion of potential embryo presence. Examination of the egg content revealed residual blood vessels and a small red spot, indicative of an early-stage embryo. DNA was extracted from the three deceased embryos and from the mother's blood, five microsatellites were analyzed to ascertain the origin of the embryos. The captive history data, together with the genetic microsatellite analysis approach, demonstrated the parthenogenetic origin of all three embryos. The embryos were homozygous for each of the maternal microsatellites, suggesting a terminal fusion automixis mode of development.


Subject(s)
Boidae , Animals , Boidae/genetics , Reproduction/genetics , Eggs , Embryo, Mammalian , Parthenogenesis/genetics
6.
Front Vet Sci ; 10: 1178288, 2023.
Article in English | MEDLINE | ID: mdl-37152691

ABSTRACT

Both condensed and hydrolysable tannins (CTs and HTs, respectively) have the ability to reduce enteric CH4 production in ruminants. However, the precise mechanism of action is not fully understood. Among the proposed hypotheses are the reduction of ruminal digestibility, direct control action on protozoa, reduction of archaea, and a hydrogen sink mechanism. In this in vitro study, which simulated rumen fermentation, two additives, one containing CTs (70% based on DM) from quebracho and one with HTs (75% based on DM) from chestnut, at four levels of inclusion (2, 4, 6, 8% on an as-fed basis) were added to the fermentation substrate and tested against a negative control. Both types of tannins significantly reduced total gas (GP) and CH4 (ml/g DM) production during the 48 h of incubation. The lower GP and CH4 production levels were linked to the reduction in dry matter digestibility caused by CTs and HTs. Conversely, no significant differences were observed for the protozoan and archaeal populations, suggesting a low direct effect of tannins on these rumen microorganisms in vitro. However, both types of tannins had negative correlations for the families Bacteroidales_BS11 and F082 and positive correlations for the genera Prevotella and Succinivibrio. Regarding the fermentation parameters, no differences were observed for pH and total volatile fatty acid production, while both CTs and HTs linearly reduced the NH3 content. CTs from quebracho were more effective in reducing CH4 production than HTs from chestnut. However, for both types of tannins, the reduction in CH4 production was always associated with a lower digestibility without any changes in archaea or protozoa. Due to the high variability of tannins, further studies investigating the chemical structure of the compounds and their mechanisms of action are needed to understand the different results reported in the literature.

7.
Animals (Basel) ; 13(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36899801

ABSTRACT

The discovery of the Robertsonian translocation (rob) involving cattle chromosomes 1 and 29 and the demonstration of its deleterious effects on fertility focused the interest of many scientific groups on using chromosome banding techniques to reveal chromosome abnormalities and verify their effects on fertility in domestic animals. At the same time, comparative banding studies among various species of domestic or wild animals were found useful for delineating chromosome evolution among species. The advent of molecular cytogenetics, particularly the use of fluorescence in situ hybridization (FISH), has allowed a deeper investigation of the chromosomes of domestic animals through: (a) the physical mapping of specific DNA sequences on chromosome regions; (b) the use of specific chromosome markers for the identification of the chromosomes or chromosome regions involved in chromosome abnormalities, especially when poor banding patterns are produced; (c) better anchoring of radiation hybrid and genetic maps to specific chromosome regions; (d) better comparisons of related and unrelated species by comparative FISH mapping and/or Zoo-FISH techniques; (e) the study of meiotic segregation, especially by sperm-FISH, in some chromosome abnormalities; (f) better demonstration of conserved or lost DNA sequences in chromosome abnormalities; (g) the use of informatic and genomic reconstructions, in addition to CGH arrays, to predict conserved or lost chromosome regions in related species; and (h) the study of some chromosome abnormalities and genomic stability using PCR applications. This review summarizes the most important applications of molecular cytogenetics in domestic bovids, with an emphasis on FISH mapping applications.

8.
Anim Genet ; 53(5): 676-679, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35775462

ABSTRACT

Studies into telomere length in cattle are relatively recent and have focused mainly on the Holstein Friesian cattle breed, making it arduous to evaluate the correlation with ageing due to the early age of culling in this breed. Telomere length provides information about the productive lifespan and the quality of farm management, complying with the 'One Health' approach. This study evaluated telomere length in Agerolese cattle, an autochthonous dairy breed characterized by a long productive lifespan (13 years). Multiplex quantitative PCR estimated telomere length in DNA extracted from blood and milk matrices. Interestingly, the results showed longer telomeres in Agerolese (compared to the Holstein Friesian cattle control group), with a negative correlation between telomere length and increasing age and a synchronous trend between blood and milk samples, with a positive correlation between them.


Subject(s)
Longevity , Milk , Aging , Animals , Cattle/genetics , Dairying/methods , Female , Lactation , Telomere/genetics
9.
Animals (Basel) ; 11(11)2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34827841

ABSTRACT

The water buffalo (Bubalus bubalis), also known as the Asian buffalo, is an essential domestic bovid. Indeed, although its world population (~209 million heads) is approximately one-ninth that of cattle, the management of this species involves a larger human population than that involved with raising cattle. Compared with cattle, water buffalo have been understudied for many years, but interest in this species has been increasing, especially considering that the world population of these bovids grows every year-particularly that of the river buffalo. There are two genera of buffalo worldwide: the Syncerus (from the African continent), and the Bubalus (from the southwest Asian continent, Mediterranean area, southern America, and Australia). All species belonging to these two genera have specific chromosome numbers and shapes. Because of such features, the study of chromosomes is a fascinating biological basis for differentiating various species (and hybrids) of buffaloes and characterizing their karyotypes in evolutionary, clinical, and molecular studies. In this review, we report an update on essential cytogenetic studies in which various buffalo species were described from evolutionary, clinical, and molecular perspectives-particularly considering the river buffalo (Bubalus bubalis 2n = 50). In addition, we show new data on swamp buffalo chromosomes.

10.
Anim Nutr ; 7(1): 224-231, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33997351

ABSTRACT

This study investigated the effects of 2 Achillea moschata essential oils extracted from plants collected in 2 different valleys of the Italian Alps and 3 pure compounds of oils - bornyl acetate (BOR), camphor (CAM), and eucalyptol (EUCA) - on in vitro ruminal fermentation and microbiota. An in vitro batch fermentation experiment (Exp. 1) tested the addition of all of the substances (2 essential oils and 3 compounds) in fermentation bottles (120 mL) at 48 h of incubation, whereas a subsequent in vitro continuous culture experiment (Exp. 2) evaluated the pure compounds added to the fermenters (2 L) for a longer incubation period (9 d). In both experiments, total mixed rations were incubated with the additives, and samples without additives were included as the control (CTR). Each treatment was tested in duplicate and was repeated in 3 and 2 fermentation runs in Exp. 1 and 2, respectively. Gas production (GP) in Exp. 1 was similar for all of the treatments, and short chain volatile fatty acid (SCFA) production was similar in both experiments except for a decrease of SCFA produced (P = 0.029) due to EUCA addition in Exp. 2. Compared to CTR, BOR and CAM reduced the valerate proportion (P = 0.04) in Exp. 1, and increased (P < 0.01) the acetate proportion in Exp. 2. All treatments increased (P < 0.01) total protozoa counts (+36.7% and +48.4% compared to CTR on average for Exp. 1 and 2, respectively). In Exp. 1, all of the treatments lowered the Bacteroidetes and Firmicutes and increased the Proteobacteria relative abundances (P < 0.05), whereas in Exp. 2, the EUCA addition increased (P = 0.012) the Ruminococcus. In Exp. 1, methane (CH4) as a proportion of the GP was lowered (P = 0.004) by the addition of CAM and EUCA compared to CTR, whereas in Exp. 2, EUCA reduced the amount of stoichiometrically calculated CH4 compared to CTR. Overall, essential oils extracted from A. moschata and the pure compounds did not depress in vitro rumen fermentation, except for EUCA in Exp. 2. In both experiments, an increase of the protozoal population occurred for all the additives.

11.
Animals (Basel) ; 11(3)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809390

ABSTRACT

After discovering the Robertsonian translocation rob(1;29) in Swedish red cattle and demonstrating its harmful effect on fertility, the cytogenetics applied to domestic animals have been widely expanded in many laboratories in order to find relationships between chromosome abnormalities and their phenotypic effects on animal production. Numerical abnormalities involving autosomes have been rarely reported, as they present abnormal animal phenotypes quickly eliminated by breeders. In contrast, numerical sex chromosome abnormalities and structural chromosome anomalies have been more frequently detected in domestic bovids because they are often not phenotypically visible to breeders. For this reason, these chromosome abnormalities, without a cytogenetic control, escape selection, with subsequent harmful effects on fertility, especially in female carriers. Chromosome abnormalities can also be easily spread through the offspring, especially when using artificial insemination. The advent of chromosome banding and FISH-mapping techniques with specific molecular markers (or chromosome-painting probes) has led to the development of powerful tools for cytogeneticists in their daily work. With these tools, they can identify the chromosomes involved in abnormalities, even when the banding pattern resolution is low (as has been the case in many published papers, especially in the past). Indeed, clinical cytogenetics remains an essential step in the genetic improvement of livestock.

12.
J Insect Sci ; 21(1)2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33480429

ABSTRACT

The interest in using byproducts from agro-food industries as a rearing substrate for insects is increasing rapidly. We investigated the influence of byproducts of vegetal origin (okara-a byproduct of soy milk production, maize distillers with solubles, brewer's grains), used as rearing diet for black soldier fly larvae (BSFL), on the following parameters: biomass production, substrate reduction (SR), nutritional profile and in vitro digestibility, and larval gut microbiota. Hen diet was used as a control substrate. The highest larval biomass was collected on maize distillers, whereas the highest SR was observed on okara. The rearing substrate affected ash, ether extract, and chitin larval content. The BSFL reared on okara were characterized by a lower lauric acid content (17.6% of total fatty acids). Diets also influenced in vitro crude protein digestibility (%) for monogastrics, with the highest values for BSFL reared on maize distillers (87.8), intermediate for brewer's grains and okara BSFL, and the lowest for hen BSFL (82.7). The nutritive value for ruminants showed a lower Net Energy for lactation for BSFL reared on hen diet than okara and dried maize distillers BSFL. The different byproducts showed an influence on the larval gut microbiota, with a major bacterial complexity observed on larvae fed with the hen diet. The neutral detergent fiber concentration of dietary substrate was negatively correlated with Firmicutes and Actinobacteria relative abundance. Insects valorized byproducts converting them into high-value larval biomass to be used for feed production. The results evidenced the effects of the tested byproducts on the measured parameters, underling the chemical composition importance on the final insect meal quality.


Subject(s)
Animal Feed/analysis , Digestion , Diptera/physiology , Energy Metabolism , Entomology/methods , Insect Control/methods , Agriculture , Animals , Biomass , Diet , Diptera/growth & development , Diptera/microbiology , Industrial Waste/analysis , Larva/growth & development , Larva/microbiology , Larva/physiology , Microbiota
13.
Animals (Basel) ; 10(9)2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32947906

ABSTRACT

Impaired fertility associated with disorders of sex development (DSDs) due to genetic causes in dogs are more and more frequently reported. Affected dogs are usually of specific breeds thus representing a cause of economic losses for breeders. The aim of this research is to report the clinical, cytogenetic and molecular genetic findings of four XX SRY-negative DSD dog cases. All the subjects showed a female aspect and the presence of an enlarged clitoris with a penis bone. Morphopathological analyses performed in three of the four cases showed the presence of testes in two cases and ovotestis in another. Conventional and R-banded cytogenetic techniques were applied showing that no chromosome abnormalities were involved in these DSDs. CGH arrays show the presence of 11 copy number variations (CNVs), one of which is a duplication of 458 Kb comprising the genomic region between base 17,503,928 and base 17,962,221 of chromosome 9 (CanFam3 genome assembly). This CNV, confirmed also by qPCR, includes the promoter region of SOX9 gene and could explain the observed phenotype.

14.
Cytogenet Genome Res ; 160(4): 193-198, 2020.
Article in English | MEDLINE | ID: mdl-32485720

ABSTRACT

Both cattle (Bos taurus) and sheep (Ovis aries) belong to the Bovidae family but to different subfamilies, Bovinae and Caprinae, respectively. From a chromosomal point of view, apart from the already known centric fusions (that occurred during the evolutionary process in the Bovidae family) and the small differences in the chromosome classification, the 2 karyotypes are very similar in banding patterns. In this study, the combination of bioinformatics techniques and physical mapping of DNA markers enabled the identification of a micro-rearrangement, a small inversion involving bovine chromosome 21 (BTA21) and the corresponding sheep chromosome 18 (OAR18). The aim of this study was the cytogenetic characterization of this difference in genomic assemblies between cattle and sheep in this single chromosome region. To verify the inversion in FISH experiments, we used the BACs 442H08 and 222H03 from the INRA library and BACs 134H22 and 436P08 from the sheep-specific CHORI library. The results confirmed the presence of the inverted fragment in sheep compared to the cattle genome. Genomic rearrangements may have consequences depending on their influence on gene activity, but in this case no gene or transcribed DNA portion seemed to be involved. In conclusion, we showed for the first time, concerning autosomes, that besides the already known centric fusions also other differences exist between the bovine and sheep karyotypes. Furthermore, we demonstrated that the combination of a bioinformatics approach and physical mapping is a valid tool for the identification of currently unknown rearrangements between related species.


Subject(s)
Cattle/genetics , Chromosome Inversion/genetics , Chromosomes, Mammalian/genetics , Evolution, Molecular , Karyotyping , Sheep/genetics , Animals , Female , In Situ Hybridization, Fluorescence , Male
15.
PLoS One ; 15(5): e0232592, 2020.
Article in English | MEDLINE | ID: mdl-32365118

ABSTRACT

Chromosomal aberrations are relatively frequent pathologies in both humans and animals. Among them, translocations present a specific meiotic segregation pattern able to give a higher percentage of unbalanced gametes that can induce fertility problems. In this study, the meiotic segregation patterns of 1p, 1q and 18 Bubalus bubalis chromosomes were analyzed in both total sperm fraction and motile sperm fraction of a t(1p;18) carrier and a control bulls by triple-color FISH analysis with a pool of specific BAC probes. The frequencies of each total sperm fraction products in the carrier resulting from alternate, adjacent I, adjacent II and 3:1 segregation were 39%, 20%, 1% and 38%, respectively. On the other hand, the frequencies of each motile sperm fraction products in the carrier resulting from alternate, adjacent I, adjacent II and 3:1 segregation were 93%, 5%, 0% and 2%, respectively. The frequencies of normal sperms in the carrier were 27% and 69% in total sperm fraction and motile sperm fraction, respectively. The frequencies detected in motile sperm fraction were also validated by comparison with bull's progeny. To our knowledge, this is the first report on the meiotic segregation patterns in motile sperm fractions of B. bubalis bull carrying a chromosomal translocation. These data suggest that translocation has a very limited effect on aneuploidy in the gametes, and therefore, on the reproductive abilities of the bull.


Subject(s)
Buffaloes/genetics , Meiosis , Sperm Motility , Spermatozoa/physiology , Spermatozoa/ultrastructure , Translocation, Genetic , Aneuploidy , Animals , Buffaloes/physiology , Chromosome Aberrations , Chromosome Segregation , Chromosomes, Artificial, Bacterial , Cryopreservation , In Situ Hybridization, Fluorescence , Male , Reproduction
16.
Cytogenet Genome Res ; 160(2): 85-93, 2020.
Article in English | MEDLINE | ID: mdl-32235117

ABSTRACT

From an economic point of view, Bovidae represent the most important family of the Ruminantia suborder. Thus, the mitochondrial and nuclear genomes of Bos taurus were among the first genomes to be sequenced after the sequencing of the human genomes. Over the millennia, the evolution of the genomes of the 3 main species belonging to the Bovidae family - B. taurus (BTA), Ovis aries (OAR), and Capra hircus (CHI) - has led to few chromosome rearrangements. Certainly, the availability and free access to the animal genomes significantly contributed to the improvement of animal genetics; however, some errors may exist due to the high automation in the genomic assembly construction process. In this work, some differences between the genomes of cattle, goat, and sheep highlighted by bioinformatics analysis have been verified by FISH, confirming that some errors persist even in the most recent genome assemblies. This type of approach has allowed us to detect a misassembly of a region belonging to BTA16 and to the homologues OAR12 and CHI16, a misassembly of a short tract in BTA22, OAR19, and CHI22, an incorrect mapping of a region of BTA21 and of CHI27 and OAR26, a discrepancy in the BTA26, OAR22, and CHI26 assemblies, a missed inversion in CHI1 compared to BTA1 and OAR1, and the exact assembly of a region of about 7 Mb in OAR10 and CHI12. Incorrect positioning of genomic tracts can cause unintended consequences in genetic analyses, especially when the data represent a starting point for the construction of genetic tools. In the new genomic assemblies published after the conclusion of our experiments, however, the accuracy in the construction of animal assemblies has been much improved, even if the new assemblies present more extended unmapped portions than the previous versions. The gap could be filled by comparative analyses between similar species or FISH.


Subject(s)
Cattle/genetics , Chromosomes, Mammalian/genetics , Computational Biology/methods , Goats/genetics , Sheep/genetics , Animals , Contig Mapping , Evolution, Molecular , Genetic Variation , Genomics , In Situ Hybridization, Fluorescence
17.
Sex Dev ; 12(6): 288-294, 2018.
Article in English | MEDLINE | ID: mdl-30086548

ABSTRACT

In mammals, the regression of the müllerian ducts is regulated by the action of the AMH hormone which is produced by testes during embryonic development. The action of this hormone is mediated by the only known receptor AMHR2. Mutations occurring in the AHM hormone and/or in the AMHR2 receptor gene cause the lack of regression of müllerian ducts, which may therefore persist even in male embryos carrying a XY chromosomal arrangement. This is known as the persistent müllerian duct syndrome (PMDS). A female German Shepherd dog was referred to the veterinary clinic because of urinary incontinence. She also showed an anatomical structure that protruded from and enlarged the vulvar labia. From the morphological appearance, one gonad resembled an ovary and the other a testicle. The histological examination instead showed that the gonads were both testes with an underdeveloped parenchyma and without signs of spermatogenetic activity. No alterations were found with regard to the uterus which showed a correctly developed body, cervix, and horns. Genetic analysis, performed on DNA extracted from blood, showed (i) the presence of both X and Y chromosomes, (ii) the absence of chromosome XX/XY chimerism, (iii) a normal SRY gene coding sequence, (iv) a normal AMHR2 gene coding sequence, and (v) a normal AMH gene coding sequence. In this study, we report and characterize a new case of PMDS in a dog excluding that the only mutation hitherto found in the AMHR2 gene is responsible for the observed phenotype.

18.
Sex Dev ; 12(4): 196-203, 2018.
Article in English | MEDLINE | ID: mdl-29902792

ABSTRACT

In mammals, the sex of the embryo depends on the SRY gene. In the presence of at least one intact and functional copy of this genetic factor (XY embryo) undifferentiated gonads will develop as testicles that subsequently determine the male phenotype. When this factor is not present, i.e., in subjects with 2 X chromosomes, an alternative pathway induces the development of ovaries, hence a female phenotype. In this case study, we describe a female cattle affected by a disorder of sex development (DSD). The subject, despite having a chromosomal XY constitution, did not develop testicles but ovaries, although they were underdeveloped. Moreover, genetic analysis highlighted the presence of the SRY gene with a normal coding region in both blood- and tissue-derived DNA. A chimeric condition was excluded in blood by sexing more than 350 cells and by allele profile investigation of 18 microsatellite markers. Array CGH analysis showed the presence of a not yet described 99-kb duplication (BTA18), but its relationship with the phenotype remains to be demonstrated. Gonadal histology demonstrated paired ovaries: the left one containing a large corpus luteum and the right one showing an underdeveloped aspect and very few early follicles. To our knowledge, we describe the first case of XY (SRY+) DSD in cattle with a normal SRY gene coding sequence.


Subject(s)
Disorders of Sex Development/genetics , Ovary/pathology , Sex-Determining Region Y Protein/genetics , Alleles , Animals , Base Sequence , Cattle , Clitoris/pathology , Cytogenetic Analysis , Female , Genetic Markers , Uterus/pathology
19.
Sex Dev ; 11(4): 210-216, 2017.
Article in English | MEDLINE | ID: mdl-28848109

ABSTRACT

In most mammals, the sex of an individual is genetically determined by the Y chromosome-specific SRY gene. The presence of at least one functional copy of this gene determines the development of the primordial gonads into testes. However, testicular tissue does develop in the absence of SRY, albeit rarely, which is the case in testicular XX (SRY-negative) disorder of sex development (DSD). This condition is very important for studying the process of sexual determination because it allows the identification of genetic factors that are able to promote the male developmental pathway in the absence of SRY and thereby enables a better understanding of this process. Until now, this condition has been identified in various animal species but has never been reported in cat. In this study, we describe the first case of an XX (SRY-negative) DSD cat. The cat possesses a tortoiseshell coat associated with male-like external genitalia, including normal scrotum with 2 palpably normal testicles. Histological analysis confirmed the presence of the testes, and cytogenetic and genetic analyses showed a female karyotype associated with the absence of the SRY gene. Finally, sequencing of the RSPO1 gene revealed no mutation, and FISH analysis of the SOX9 locus did not reveal any large abnormalities.


Subject(s)
Cats/genetics , Disorders of Sex Development/genetics , Sex-Determining Region Y Protein/genetics , Testis/pathology , Animals , DNA/blood , Gene Amplification , In Situ Hybridization, Fluorescence , Karyotyping , Male , SOX9 Transcription Factor/genetics
20.
J Vet Diagn Invest ; 29(6): 874-876, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28782451

ABSTRACT

Inherited forms of ichthyosis, or generalized scaling of the skin, have been reported in many animal species, including cattle, and are characterized by an autosomal recessive mode of inheritance. We investigated 2 calves affected with ichthyosis fetalis, a Polled Hereford and a Shorthorn. Both cases had hard white plaques on the skin consistent with excessive keratinization. This was confirmed by histopathology, which showed severe diffuse epidermal and follicular orthokeratotic hyperkeratosis. The known mutation (H1935R) in gene ABCA12, responsible for ichthyosis fetalis in Chianina cattle, was shown to be absent in both affected calves and their obligate heterozygous parents. These molecular findings indicate that allelic heterogeneity exists for this condition in cattle.


Subject(s)
Cattle Diseases/genetics , Genetic Predisposition to Disease , Ichthyosis/veterinary , Animals , Cattle , Cattle Diseases/pathology , Ichthyosis/genetics , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...