Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav Immun ; 116: 193-202, 2024 02.
Article in English | MEDLINE | ID: mdl-38081433

ABSTRACT

Appropriate regulation of the inflammatory response is essential for survival. Interleukin-10 (IL-10), a well-known anti-inflammatory cytokine, plays a major role in controlling inflammation. In addition to immune cells, we previously demonstrated that the IL-10 receptor (IL-10R1) is expressed in dorsal root ganglion sensory neurons. There is emerging evidence that these sensory neurons contribute to immunoregulation, and we hypothesized that IL-10 signaling in dorsal root ganglion (DRG) neurons facilitates the regulation of the inflammatory response. We showed that mice that lack IL-10R1 specifically on advillin-positive neurons have exaggerated blood nitric oxide levels, spinal microglia activation, and cytokine upregulation in the spinal cord, liver, and gut compared to wild-type (WT) counterparts in response to systemic lipopolysaccharide (LPS) injection. Lack of IL-10R1 in DRG and trigeminal ganglion (TG) neurons also increased circulating and DRG levels of proinflammatory C-C motif chemokine ligand 2 (CCL2). Interestingly, analysis of published scRNA-seq data revealed that Ccl2 and Il10ra are expressed by similar types of DRG neurons; nonpeptidergic P2X purinoceptor (P2X3R + ) neurons. In primary cultures of DRG neurons, we demonstrated that IL-10R1 inhibits the production of CCL2, but not that of the neuropeptides substance P and calcitonin-gene related peptide (CGRP). Furthermore, our data indicate that ablation of Transient receptor potential vanilloid (TRPV)1 + neurons does not impact the regulation of CCL2 production by IL-10. In conclusion, we showed that IL-10 binds to its receptor on sensory neurons to downregulate CCL2 and contribute to immunoregulation by reducing the attraction of immune cells by DRG neuron-derived CCL2. This is the first evidence that anti-inflammatory cytokines limit inflammation through direct binding to receptors on sensory neurons. Our data also add to the growing literature that sensory neurons have immunomodulatory functions.


Subject(s)
Inflammation , Interleukin-10 , Mice , Animals , Interleukin-10/metabolism , Ligands , Inflammation/metabolism , Sensory Receptor Cells , Anti-Inflammatory Agents/metabolism , Ganglia, Spinal/metabolism
2.
Biomolecules ; 13(11)2023 11 14.
Article in English | MEDLINE | ID: mdl-38002333

ABSTRACT

Histamine is a neuromodulator that affects gut motility and visceral sensitivity through intrinsic and extrinsic neural pathways, yet the mechanisms regulating histamine availability in these pathways remain poorly understood. Here, we show that enteric glia contribute to histamine clearance in the enteric nervous system (ENS) through their expression of the enzyme histamine N-methyltransferase (HNMT). Glial HNMT expression was initially assessed using immunolabeling and gene expression, and functionally tested using CRISPR-Cas9 to create a Cre-dependent conditional Hnmt ablation model targeting glia. Immunolabeling, calcium imaging, and visceromotor reflex recordings were used to assess the effects on ENS structure and visceral hypersensitivity. Immunolabeling and gene expression data show that enteric neurons and glia express HNMT. Deleting Hnmt in Sox10+ enteric glia increased glial histamine levels and altered visceromotor responses to colorectal distension in male mice, with no effect in females. Interestingly, deleting glial Hnmt protected males from histamine-driven visceral hypersensitivity. These data uncover a significant role for glial HNMT in histamine degradation in the gut, which impacts histamine-driven visceral hypersensitivity in a sex-dependent manner. Changes in the capacity of glia to clear histamines could play a role in the susceptibility to developing visceral pain in disorders of the gut-brain interaction.


Subject(s)
Histamine N-Methyltransferase , Histamine , Female , Male , Mice , Animals , Histamine/metabolism , Histamine N-Methyltransferase/genetics , Neuroglia/metabolism , Neurons/metabolism , Brain/metabolism
3.
Front Behav Neurosci ; 17: 1176777, 2023.
Article in English | MEDLINE | ID: mdl-37351153

ABSTRACT

Introduction: Glutamate excitotoxicity is causal in striatal neurodegeneration underlying motor dysfunction and cognitive deficits in Huntington's disease (HD). Excitatory amino acid transporter 2 (EAAT2), the predominant glutamate transporter accounting for >90% of glutamate transport, plays a key role in preventing excitotoxicity by clearing excess glutamate from the intrasynaptic cleft. Accordingly, EAAT2 has emerged as a promising therapeutic target for prevention of neuronal excitotoxicity underlying HD and other neurodegenerative diseases. Methods: We have previously designed novel EAAT2 positive allosteric modulator GT951, GTS467, and GTS551, with low nanomolar efficacy in glutamate uptake and favorable pharmacokinetic properties. In this study, we test the neuroprotective abilities of these novel EAAT2 activators in vivo using the robust Drosophila HD transgenic model expressing human huntingtin gene with expanded repeats (Htt128Q). Results: All three compounds significantly restored motor function impaired under HD pathology over a wide dose range. Additionally, treatment with all three compounds significantly improved HD-associated olfactory associative learning and short-term memory defects, while GT951 and GTS551 also improved middle-term memory in low-performing group. Similarly, treatment with GT951 and GTS551 partially protected against early mortality observed in our HD model. Further, treatment with all three EAAT2 activators induced epigenetic expression of EAAT2 Drosophila homolog and several cognition-associated genes. Conclusion: Together, these results highlight the efficacy of GT951, GTS467 and GTS551 in treating motor and cognitive impairments under HD pathology and support their development for treatment of HD.

4.
Epigenetics ; 17(7): 786-807, 2022.
Article in English | MEDLINE | ID: mdl-34369292

ABSTRACT

Disruption of histone acetylation-mediated gene control is a critical step in Alzheimer's Disease (AD), yet chromatin analysis of antagonistic histone acetyltransferases (HATs) and histone deacetylases (HDACs) causing these alterations remains uncharacterized. We report the first Tip60 HAT versus HDAC2 chromatin (ChIP-seq) and transcriptional (RNA-seq) profiling study in Drosophila melanogaster brains that model early human AD. We find Tip60 and HDAC2 predominantly recruited to identical neuronal genes. Moreover, AD brains exhibit robust genome-wide early alterations that include enhanced HDAC2 and reduced Tip60 binding and transcriptional dysregulation. Orthologous human genes to co-Tip60/HDAC2 D. melanogaster neural targets exhibit conserved disruption patterns in AD patient hippocampi. Notably, we discovered distinct transcription factor binding sites close or within Tip60/HDAC2 co-peaks in neuronal genes, implicating them in coenzyme recruitment. Increased Tip60 protects against transcriptional dysregulation and enhanced HDAC2 enrichment genome-wide. We advocate Tip60 HAT/HDAC2 mediated epigenetic neuronal gene disruption as a genome-wide initial causal event in AD.


Subject(s)
Alzheimer Disease , Drosophila Proteins , Histone Acetyltransferases , Histone Deacetylase 2 , Acetylation , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Brain/metabolism , Chromatin/metabolism , DNA Methylation , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Epigenomics , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism , Humans , Transcriptome
5.
Sci Rep ; 10(1): 18265, 2020 10 26.
Article in English | MEDLINE | ID: mdl-33106538

ABSTRACT

Epigenetic dysregulation is a common mechanism shared by molecularly and clinically heterogenous neurodegenerative diseases (NDs). Histone acetylation homeostasis, maintained by the antagonistic activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs), is necessary for appropriate gene expression and neuronal function. Disruption of neural acetylation homeostasis has been implicated in multiple types of NDs including Alzheimer's disease (AD), yet mechanisms underlying alterations remain unclear. We show that like AD, disruption of Tip60 HAT/HDAC2 balance with concomitant epigenetic repression of common Tip60 target neuroplasticity genes occurs early in multiple types of Drosophila ND models such as Parkinson's Disease (PD), Huntington's Disease (HD) and Amyotrophic Lateral Sclerosis (ALS). Repressed neuroplasticity genes show reduced enrichment of Tip60 and epigentic acetylation signatures at all gene loci examined with certain genes showing inappropriate HDAC2 repressor enrichment. Functional neuronal consequences for these disease conditions are reminiscent of human pathology and include locomotion, synapse morphology, and short-term memory deficits. Increasing Tip60 HAT levels specifically in the mushroom body learning and memory center in the Drosophila brain protects against locomotion and short-term memory function deficits in multiple NDs. Together, our results support a model by which Tip60 protects against neurological impairments in different NDs via similar modes of action.


Subject(s)
Alzheimer Disease/metabolism , Drosophila Proteins/metabolism , Histone Acetyltransferases/metabolism , Histones/metabolism , Neurodegenerative Diseases/metabolism , Parkinson Disease/metabolism , Acetylation , Alzheimer Disease/pathology , Animals , Brain/metabolism , Disease Models, Animal , Drosophila , Histones/chemistry , Homeostasis , Learning/physiology , Memory/physiology , Neurodegenerative Diseases/pathology , Parkinson Disease/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...