Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 478
Filter
1.
Heliyon ; 10(6): e28081, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38524549

ABSTRACT

Termites are one of the most common pests that damage wood and other cellulosic materials. Although Africa has more varieties of termite species than any other continent, few entomological studies have been conducted in Gabon. Identifying termites poses significant difficulties for entomologists. The aim of this study was to evaluate the reliability and confirm the significance of MALDI-TOF MS in identifying fresh termites collected in equatorial Africa. A total of 108 termites were collected from 13 termite nests during a field mission in 2021 in Lekedi and Bongoville, Gabon. Termites were morphologically identified and subjected to MALDI-TOF MS, then molecular analyses using the COI and 12S rRNA genes. Four termite species were morphologically identified in this study: Pseudacanthotermes militaris, Macrotermes muelleri, Macrotermes nobilis, and Noditermes indoensis. However, when using molecular biology, only three species were identified, namely Macrotermes bellicosus, P. militaris, and N. indoensis, because the specimens initially identified as M. muelleri and M. nobilis were found to be M. bellicosus. The MALDI-TOF MS spectral profiles of the termites were all of good quality, with intra-species reproducibility and inter-species specificity. The spectra of 98 termites were blind tested against our upgraded database, which included the spectra of ten termite specimens. All tested spectra were correctly matched to their respective species, with log score values (LSVs) ranging from 1.649 to 2.592. The mean LSV was 2.215 ± 0.203, and the median was 2.241. However, 95.91% (94/98) of our spectra had LSVs above 1.8. This study demonstrates how a proteomic approach can overcome termites' molecular and morphological identification limitations and serve as a useful taxonomic tool.

2.
Acta Trop ; 249: 107086, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38036023

ABSTRACT

After vanishing from the public eye for more than 50 years, bed bugs have resurged to become one of the most widely discussed and heavily researched insect pests in the world. This study presents the basic information of infestations of tropical bed bugs, Cimex hemipterus (Hemiptera: Cimicidae), in Cameroon. A total of 248 immature stage and adult bed bug specimens were collected from households and a travel agency in Yaoundé and Douala, Cameroon. The ability of MALDI-TOF MS to identify bed bugs was tested using heads for adults and cephalothoraxes for immature stages. Microorganism screening was performed by qPCR and confirmed by regular PCR and sequencing. Based on morphometrical criteria, four stages of immature bed bugs are represented. Of the 248 bed bug specimens morphologically identified as Cimex hemipterus, 246 (77 males, 65 females and 104 immature specimens) were submitted to MALDI-TOF MS analysis. Of the 222 adults and immature specimens tested, 122 (59.9 %) produced good quality MALDI-TOF MS spectra (35 adults and 87 immature specimens). Blind testing allowed species level identification of 98.21 % of adult and immature C. hemipterus. Among the bacteria tested, only Wolbachia DNA was found in 12/246 (4.8 %) bed bugs. More surveys in the country are warranted to assess the true level of bed bug infestations, in order to take appropriate action for their control.


Subject(s)
Bedbugs , Ectoparasitic Infestations , Wolbachia , Male , Animals , Female , Bedbugs/genetics , Bedbugs/microbiology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Wolbachia/genetics , Cameroon
3.
New Microbes New Infect ; 55: 101188, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38024333

ABSTRACT

Background: Many studies have evaluated the use of hydroxychloroquine in COVID-19. Most retrospective observational studies demonstrate a benefit of using HCQ on mortality, but not most randomized clinical trials. Methods: We analyzed raw data collected from a cohort of 30,423 patients with COVID-19 cared for at IHU Méditerranée Infection in Marseille France and extracted from the DRYAD open data platform. We performed univariate and multivariable logistic regressions with all-cause mortality within six weeks. Multivariable logistic regressions were adjusted for sex, age group (<50, 50-69, 70-89 and â€‹> â€‹89 years), periods (or variants), and type of patient management. Results: Among 30,202 patients for whom information on treatment was available, 191/23,172 (0.82%) patients treated with HCQ-AZ died, compared to 344/7030 (4.89%) who did not receive treatment with HCQ-AZ. HCQ-AZ therapy was associated with a lower mortality than treatment without HCQ-AZ (odds ratio (OR) 0.16; 95% confidence interval (CI), 0.14-0.19). After adjustment for sex, age, period, and patient management, HCQ-AZ was associated with a significantly lower mortality rate (adjusted OR (aOR) 0.55, 95% CI 0.45-0.68). On a subsample of 21,664 patients with available variant information, results remained robust after adjustment on sex, age, patient management and variant (aOR 0.55; 95% CI 0.44-0.69). On a subsample of 16,063 patients, HCQ-AZ was still associated with a significantly lower mortality rate (aOR 0.47, 95%CI 0.29-0.75) after adjustment for sex, age, period, patient management, vaccination status and comorbidities. Conclusion: Analysis of this large online database showed that HCQ-AZ was consistently associated with the lowest mortality.

4.
Pathogens ; 12(11)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-38003741

ABSTRACT

Ticks are a significant group of arthropod vectors that transmit a large variety of pathogens responsible for human and animal diseases worldwide. Ticks are the second biggest transmitters of vector-borne diseases, behind mosquitoes. However, in West Africa, there is often only limited knowledge of tick-borne diseases. With the scarcity of appropriate diagnostic services, the prevalence of tick-borne diseases is generally underestimated in humans. In this review, we provide an update on tick-borne pathogens reported in people, animals and ticks in West Africa by microscopic, immunological and molecular methods. A systematic search was conducted in PubMed and Google Scholar. The selection criteria included all studies conducted in West Africa reporting the presence of Rickettsia, Borrelia, Anaplasma, Ehrlichia, Bartonella, Coxiella burnetii, Theileria, Babesia, Hepatozoon and Crimean-Congo haemorrhagic fever viruses in humans, animals or ticks. Our intention is to raise awareness of tick-borne diseases amongst human and animal health workers in West Africa, and also physicians working with tourists who have travelled to the region.

5.
Insects ; 14(10)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37887797

ABSTRACT

Mosquitoes are arthropods that represent a real public health problem in Africa. Morphology and molecular biology techniques are usually used to identify different mosquito species. In recent years, an innovative tool, matrix-assisted desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), has been used to identify many arthropods quickly and at low cost, where equipment is available. We evaluated the ability of MALDI-TOF MS to identify mosquitoes collected in Senegal and stored for several months in silica gel, and to determine the origin of their blood meal. A total of 582 mosquitoes were collected and analysed. We obtained 329/582 (56.52%) MALDI-TOF MS good-quality spectra from mosquito legs and 123/157 (78.34%) good-quality spectra from engorged abdomens. We updated our home-made MALDI-TOF MS arthropod spectra database by adding 23 spectra of five mosquito species from Senegal that had been identified morphologically and molecularly. These included legs from Anopheles gambiae, Anopheles arabiensis, Anopheles cf. rivulorum, Culex nebulosus, Anopheles funestus, and three spectra from abdomens engorged with human blood. Having updated the database, all mosquitoes tested by MALDI-TOF MS were identified with scores greater than or equal to 1.7 as An. gambiae (n = 64), Anopheles coluzzii (n = 12), An. arabiensis (n = 1), An. funestus (n = 7), An. cf rivulorum (n = 1), Lutzia tigripes (n = 3), Cx. nebulosus (n = 211), Culex quinquefasciatus (n = 2), Culex duttoni (n = 1), Culex perfescus (n = 1), Culex tritaeniorhynchus (n = 1), and Aedes aegypti (n = 2). Blood meal identification by MALDI-TOF MS revealed that mosquitoes had fed on the blood of humans (n = 97), cows (n = 6), dogs (n = 2), goats (n = 1), sheep (n = 1), and bats (n = 1). Mixed meals were also detected. These results confirm that MALDI-TOF MS is a promising technique for identifying mosquitoes and the origin of their blood meal.

6.
Insects ; 14(10)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37887837

ABSTRACT

MALDI-TOF is now considered a relevant tool for the identification of arthropods, including lice and fleas. However, the duration and conditions of storage, such as in ethanol, which is frequently used to preserve these ectoparasites, could impede their classification. The purpose of the present study was to assess the stability of MS profiles from Pediculus humanus corporis lice and Ctenocephalides felis fleas preserved in alcohol from one to four years and kinetically submitted to MALDI-TOF MS. A total of 469 cephalothoraxes from lice (n = 170) and fleas (n = 299) were tested. The reproducibility of the MS profiles was estimated based on the log score values (LSVs) obtained for query profiles compared to the reference profiles included in the MS database. Only MS spectra from P. humanus corporis and C. felis stored in alcohol for less than one year were included in the reference MS database. Approximately 75% of MS spectra from lice (75.2%, 94/125) and fleas (74.4%, 122/164) specimens stored in alcohol for 12 to 48 months, queried against the reference MS database, obtained relevant identification. An accurate analysis revealed a significant decrease in the proportion of identification for both species stored for more than 22 months in alcohol. It was hypothesized that incomplete drying was responsible for MS spectra variations. Then, 45 lice and 60 fleas were subjected to longer drying periods from 12 to 24 h. The increase in the drying period improved the proportion of relevant identification for lice (95%) and fleas (80%). This study highlighted that a correct rate of identification by MS could be obtained for lice and fleas preserved in alcohol for up to four years on the condition that the drying period was sufficiently long for accurate identification.

8.
J Med Virol ; 95(10): e29147, 2023 10.
Article in English | MEDLINE | ID: mdl-37800532

ABSTRACT

During the current global outbreak of mpox (formerly monkeypox), atypical features were frequently described outside endemic areas, raising concerns around differential diagnosis. In this study, we included 372 adult patients who had clinical signs consistent with mpox and who were screened using non-variola orthopoxvirus specific quantitative polymerase chain reaction (PCR) between 15 May and 15 November 2022 at the University Hospital Institute Méditerranée Infection, Marseille, France. At least one clinical sample was positive for 143 (38.4%) of these patients and 229 (61.6%) were negative. Clinically, patients who had mpox presented more frequently with systemic signs (69.9% vs. 31.0%, p < 10-6 ) including fever (51.0% vs. 30.1%, p < 10-3 ), myalgia (33.5% vs. 17.9%, p = 0.002), and lymphadenopathy (38.5% vs. 13.1%, p < 10-6 ). Among the patients who were negative for the non-variola orthopoxvirus, an alternative diagnosis was identified in 58 of them (25.3%), including chickenpox (n = 30, 13.1%), syphilis (n = 9, 4%), bacterial skin infection (n = 8, 3.5%), gonococcus (n = 5, 2.2%), HSV infection (n = 5, 2.2%), and histoplasmosis (n = 1, 0.4%). Overall, in the current outbreak, we show that mpox has a poorly specific clinical presentation. This reinforces the importance of microbiological confirmation. In symptomatic patients who are negative for the monkeypox virus by PCR, a broad differential diagnosis should be maintained.


Subject(s)
Chickenpox , Cross Infection , Mpox (monkeypox) , Orthopoxvirus , Adult , Humans , Retrospective Studies , Diagnosis, Differential
9.
Pathogens ; 12(9)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37764886

ABSTRACT

The soft ticks, Ornithodoros sonrai, are known as vectors of the tick-borne relapsing fever caused by Borrelia spp. and have also been reported to carry other micro-organisms. The objective of this study was to collect and to identify O. sonrai ticks and to investigate the micro-organisms associated with them. In 2019, an investigation of burrows within human dwellings was conducted in 17 villages in the Niakhar area and in 15 villages in the Sine-Saloum area in the Fatick region of Senegal. Ticks collected from the burrows were identified morphologically and by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Micro-organism screening was performed by bacteria-specific qPCR and some identifications were made by standard PCR and gene sequencing. O. sonrai ticks were found in 100% (17/17) of the villages surveyed in the Niakhar area and in 66% (10/15) of the villages in the Sine-Saloum area. A total of 1275 soft tick specimens were collected from small mammal burrows. The ticks collected were morphologically identified as O. sonrai. About 20% (259/1275) of the specimens were also submitted to MALDI-TOF MS for identification. Among the resulting MS profiles, 87% (139/159) and 95% (95/100) were considered good quality specimens, preserved in alcohol and silica gel, respectively. All spectra of good quality were tested against our MALDI-TOF MS arthropod spectra database and identified as O. sonrai species, corroborating the morphological classification. The carriage of four micro-organisms was detected in the ticks with a high prevalence of Bartonella spp., Anaplasmataceae, and Borrelia spp. of 35, 28, and 26%, respectively, and low carriage of Coxiella burnetii (2%). This study highlights the level of tick infestation in domestic burrows, the inventory of pathogens associated with the O. sonrai tick, and the concern about the potential risk of tick involvement in the transmission of these pathogens in Senegal.

10.
Sci Rep ; 13(1): 12557, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37532686

ABSTRACT

Bed bug has become a major public health pest worldwide. Infestation may result in numerous negative health effects. Homeless shelters are one of the most habitats that can be infested with bed bugs, a few studies have focused on bed bug infestations in these settings. We conducted a survey of infestations of bed bugs in a homeless shelter in southern France, using an innovative seven-level scale (0-6) to assess the degree of infestation, MALDI TOF-MS to identify bed bugs, and a biomolecular tool to detect bacteria. Bed bug infestations were documented in 13% (9/68) of investigated rooms. A total of 184 bed bugs were collected and morphologically identified as Cimex lectularius. MALDI TOF-MS analysis allowed us to obtain high-quality MS spectra for all 184 specimens, to correctly identify all specimens, and included 178/184 (97%) Log Score Values higher than 1.8. Among the bacteria tested, Wolbachia sp. DNA was found in 149/184 (81%) of the bed bugs, and one sample was positive for Coxiella burnetii, the agent of Q fever. Our study is the first of its kind that offers new perspectives for increasing public awareness of the conditions in homeless shelters.


Subject(s)
Bedbugs , Ectoparasitic Infestations , Ill-Housed Persons , Animals , Humans , Surveys and Questionnaires , Public Health , France
14.
J Med Virol ; 95(6): e28799, 2023 06.
Article in English | MEDLINE | ID: mdl-37342884

ABSTRACT

A large outbreak of Monkeypox virus (MPXV) infections has arisen in May 2022 in nonendemic countries. Here, we performed DNA metagenomics using next-generation sequencing with Illumina or Nanopore technologies for clinical samples from MPXV-infected patients diagnosed between June and July 2022. Classification of the MPXV genomes and determination of their mutational patterns were performed using Nextclade. Twenty-five samples from 25 patients were studied. A MPXV genome was obtained for 18 patients, essentially from skin lesions and rectal swabbing. All 18 genomes were classified in clade IIb, lineage B.1, and we identified four B.1 sublineages (B.1.1, B.1.10, B.1.12, B.1.14). We detected a high number of mutations (range, 64-73) relatively to a 2018 Nigerian genome (genome GenBank Accession no. NC_063383.1), which were harbored by a large part of a set of 3184 MPXV genomes of lineage B.1 recovered from GenBank and Nextstrain; and we detected 35 mutations relatively to genome ON563414.3 (a B.1 lineage reference genome). Nonsynonymous mutations occurred in genes encoding central proteins, among which transcription factors and core and envelope proteins, and included two mutations that would truncate a RNA polymerase subunit and a phospholipase d-like protein, suggesting an alternative start codon and gene inactivation, respectively. A large majority (94%) of nucleotide substitutions were G > A or C > U, suggesting the action of human APOBEC3 enzymes. Finally, >1000 reads were identified as from Staphylococcus aureus and Streptococcus pyogenes for 3 and 6 samples, respectively. These findings warrant a close genomic monitoring of MPXV to get a better picture of the genetic micro-evolution and mutational patterns of this virus, and a close clinical monitoring of skin bacterial superinfection in monkeypox patients.


Subject(s)
Mpox (monkeypox) , Superinfection , Humans , Monkeypox virus/genetics , Genome, Viral , Gene Silencing , APOBEC Deaminases/genetics
15.
Parasit Vectors ; 16(1): 211, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37349802

ABSTRACT

Hedgehogs are small synanthropic mammals that live in rural areas as well as in urban and suburban areas. They can be reservoirs of several microorganisms, including certain pathogenic agents that cause human and animal public health issues. Hedgehogs are often parasitized by blood-sucking arthropods, mainly hard ticks and fleas, which in turn can also carry various vector-born microorganisms of zoonotic importance. Many biotic factors, such as urbanization and agricultural mechanization, have resulted in the destruction of the hedgehog's natural habitats, leading these animals to take refuge near human dwellings, seeking food and shelter in parks and gardens and exposing humans to zoonotic agents that can be transmitted either directly by them or indirectly by their ectoparasites. In this review, we focus on the microorganisms detected in arthropods sampled from hedgehogs worldwide. Several microorganisms have been reported in ticks collected from these animals, including various Borrelia spp., Anaplasma spp., Ehrlichia spp., and Rickettsia spp. species as well as Coxiella burnetii and Leptospira spp. As for fleas, C. burnetii, Rickettsia spp., Wolbachia spp., Mycobacterium spp. and various Bartonella species have been reported. The detection of these microorganisms in arthropods does not necessarily mean that they can be transmitted to humans and animals. While the vector capacity and competence of fleas and ticks for some of these microorganisms has been proven, in other cases the microorganisms may have simply been ingested with blood taken from an infected host. Further investigations are needed to clarify this issue. As hedgehogs are protected animals, handling them is highly regulated, making it difficult to conduct epidemiological studies on them. Their ectoparasites represent a very interesting source of information on microorganisms circulating in populations of these animals, especially vector-born ones.


Subject(s)
Arthropods , Bartonella , Flea Infestations , Rickettsia , Siphonaptera , Ticks , Animals , Humans , Arthropods/microbiology , Hedgehogs/parasitology , Mammals , Siphonaptera/microbiology , Ticks/microbiology
16.
J Epidemiol Glob Health ; 13(2): 163-172, 2023 06.
Article in English | MEDLINE | ID: mdl-37258852

ABSTRACT

BACKGROUND: To investigate the aetiology of acute undifferentiated fever (AUF) among children under the age of five in Vietnam. METHODS: This prospective study was conducted in the Thai Binh paediatric hospital, between July 2020 and July 2021 among children with AUF at admission. Real-time PCR testing 18 microbial pathogens were done on blood samples. RESULTS: 286 children were included, with median age of 16 months. 64.7% were male. 53.9% were positive for at least one pathogen by PCR. Enterovirus, human herpesvirus 6, adenovirus, and varicella zoster virus PCR were positive for 31.1, 12.6, 1.4, and 1.0% patients, respectively. Other pathogens tested negative by PCR. During the hospital stay, based on clinical criteria 47.2% children secondarily presented with signs of respiratory tract infections, 18.9% had hand, foot and mouth disease, 4.6% had chickenpox. 4.2% presented signs of central nervous system infections, 1.0% had dengue (antigenic test) and 1.0% had signs of gastrointestinal infection. Finally, 23.1% patients presented a fever with or without a rash and no other symptoms and ultimately received a diagnosis of AUF. CONCLUSION: Real-time PCR of blood is useful for detecting pathogens and diagnosing infectious causes of AUF. Further prospective studies with blood and urine culture testing and PCR investigation of not only blood but also cerebrospinal fluid, throat, and skin samples according to symptoms would be of interest to confirm the predominance of viral infections in children with AUF and to guide therapeutic options.


Subject(s)
Enterovirus Infections , Humans , Child , Male , Infant , Female , Prospective Studies , Vietnam/epidemiology , Enterovirus Infections/cerebrospinal fluid , Hospitalization , Length of Stay
17.
Medicina (Kaunas) ; 59(5)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37241095

ABSTRACT

Background and Objectives: Hydroxychloroquine (HCQ) combined with azithromycin (AZM) has been widely administered to patients with COVID-19 despite scientific controversies. In particular, the potential of prolong cardiac repolarization when using this combination has been discussed. Materials and Methods: We report a pragmatic and simple safety approach which we implemented among the first patients treated for COVID-19 in our center in early 2020. Treatment contraindications were the presence of severe structural or electrical heart disease, baseline corrected QT interval (QTc) > 500 ms, hypokalemia, or other drugs prolonging QTc that could not be interrupted. Electrocardiogram and QTc was evaluated at admission and re-evaluated after 48 h of the initial prescription. Results: Among the 424 consecutive adult patients (mean age 46.3 ± 16.1 years; 216 women), 21.5% patients were followed in conventional wards and 78.5% in a day-care unit. A total of 11 patients (2.6%) had contraindications to the HCQ-AZ combination. In the remaining 413 treated patients, there were no arrhythmic events in any patient during the 10-day treatment regimen. QTc was slightly but statistically significantly prolonged by 3.75 ± 25.4 ms after 2 days of treatment (p = 0.003). QTc prolongation was particularly observed in female outpatients <65 years old without cardiovascular disease. Ten patients (2.4%) developed QTc prolongation > 60 ms, and none had QTc > 500 ms. Conclusions: This report does not aim to contribute to knowledge of the efficacy of treating COVID-19 with HCQ-AZ. However, it shows that a simple initial assessment of patient medical history, electrocardiogram (ECG), and kalemia identifies contraindicated patients and enables the safe treatment of COVID-19 patients with HCQ-AZ. QT-prolonging anti-infective drugs can be used safely in acute life-threatening infections, provided that a strict protocol and close collaboration between infectious disease specialists and rhythmologists are applied.


Subject(s)
COVID-19 , Long QT Syndrome , Adult , Humans , Female , Middle Aged , Aged , Hydroxychloroquine/adverse effects , Azithromycin/adverse effects , SARS-CoV-2 , Long QT Syndrome/chemically induced , COVID-19 Drug Treatment , Electrocardiography/methods
18.
Insects ; 14(4)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37103207

ABSTRACT

Members of the Cimicidae family are significant pests for mammals and birds, and they have attracted medical and veterinary interest. A number of recent studies have investigated bed bugs, due to their dramatic resurgence all over the world. Indeed, bed bugs are of significant public health and socioeconomic importance since they lead to financial burdens and dermatological complications and may have mental and psychological consequences. It is important to note that certain cimicids with a preference for specific hosts (birds and bats) use humans as an alternative host, and some cimicids have been reported to willingly feed on human blood. In addition, members of the Cimicidae family can lead to economic burdens and certain species are the vectors for pathogens responsible for diseases. Therefore, in this review, we aim to provide an update on the species within the Cimicidae family that have varying medical and veterinary impacts, including their distribution and their associated microorganisms. Various microbes have been documented in bed bugs and certain important pathogens have been experimentally documented to be passively transmitted by bed bugs, although no conclusive evidence has yet associated them with epidemiological outbreaks. Additionally, among the studied cimicids (bat bugs, chicken bugs, and swallow bugs), only the American swallow bug has been considered to be a vector of several arboviruses, although there is no proven evidence of transmission to humans or animals. Further studies are needed to elucidate the reason that certain species in the Cimicidae family cannot be biologically involved in transmission to humans or animals. Additional investigations are also required to better understand the roles of Cimicidae family members in the transmission of human pathogens in the field.

19.
Emerg Infect Dis ; 29(4): 701-710, 2023 04.
Article in English | MEDLINE | ID: mdl-36957992

ABSTRACT

Monitoring of tickborne diseases is critical for prevention and management. We analyzed 418 ticks removed from 359 patients during 2014-2021 in Marseille, France, for identification and bacteria detection. Using morphology, molecular methods, or matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, we identified 197 (47%) Ixodes, 136 (33%) Dermacentor, 67 (16%) Rhipicephalus, 8 (2%) Hyalomma, 6 (1%) Amblyomma, 2 (0.5%) Argas, and 2 (0.5%) Haemaphysalis tick species. We also detected bacterial DNA in 241 (58%) ticks. The most frequent bacterial pathogens were Rickettsia raoultii (17%) and R. slovaca (13%) in Dermacentor ticks, Borrelia spp. (9%) in Ixodes ticks, and R. massiliae (16%) in Rhipicephalus ticks. Among patients who were bitten, 107 had symptoms, and tickborne diseases were diagnosed in 26, including scalp eschar and neck lymphadenopathy after tick bite and Lyme borrelioses. Rapid tick and bacteria identification using a combination of methods can substantially contribute to clinical diagnosis, treatment, and surveillance of tickborne diseases.


Subject(s)
Borrelia , Ixodes , Ixodidae , Lyme Disease , Rickettsia , Tick-Borne Diseases , Animals , Humans , Rickettsia/genetics , Ixodes/microbiology , Ixodidae/microbiology , Borrelia/genetics , Tick-Borne Diseases/epidemiology , France/epidemiology , DNA, Bacterial/genetics
20.
Microorganisms ; 11(3)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36985289

ABSTRACT

Fleas are obligatory blood-sucking ectoparasites of medical and veterinary importance. The identification of fleas and associated flea-borne microorganisms, therefore, plays an important role in controlling and managing these vectors. Recently, Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) has been reported as an innovative and effective approach to the identification of arthropods, including fleas. This study aims to use this technology to identify ethanol-preserved fleas collected in Vietnam and to use molecular biology to search for microorganisms associated with these fleas. A total of 502 fleas were collected from wild and domestic animals in four provinces in Vietnam. Morphological identification led to the recognition of five flea species, namely Xenopsylla cheopis, Xenopsylla astia, Pulex irritans, Ctenocephalides canis, and Ctenocephalides felis. The cephalothoraxes of 300 individual, randomly selected fleas were tested using MALDI-TOF MS and molecular analysis for the identification and detection of microorganisms. A total of 257/300 (85.7%) of the obtained spectra from the cephalothoraxes of each species were of good enough quality to be used for our analyses. Our laboratory MALDI-TOF MS reference database was upgraded with spectra achieved from five randomly selected fleas for every species of Ctenocephalides canis and Ctenocephalides felis. The remaining spectra were then queried against the upgraded MALDI-TOF MS database, which showed 100% correspondence between morphology and MALDI-TOF MS identification for two flea species (Ctenocephalides canis and Ctenocephalides felis). The MS spectra of the remaining species (three P. irritans, five X. astia, and two X. cheopis) were visually generated low-intensity MS profiles with high background noise that could not be used to update our database. Bartonella and Wolbachia spp. were detected in 300 fleas from Vietnam using PCR and sequencing with primers derived from the gltA gene for Bartonella and the 16S rRNA gene for Wolbachia, including 3 Bartonella clarridgeiae (1%), 3 Bartonella rochalimae (1%), 1 Bartonella coopersplainsensis (0.3%), and 174 Wolbachia spp. endosymbionts (58%).

SELECTION OF CITATIONS
SEARCH DETAIL
...