Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Anim Ecol ; 92(4): 925-935, 2023 04.
Article in English | MEDLINE | ID: mdl-36744653

ABSTRACT

Climate temporality is a phenomenon that affects species activity and distribution patterns across spatial and temporal scales. Despite the global availability of microclimatic data, their use to predict activity patterns and distributions remains scarce, particularly at fine temporal scales (e.g. < month). Predicting activity patterns based on climatic data may allow us to foresee some of the consequences of climate change, particularly for ectothermic vertebrates. The Gila monster exhibits marked daily and seasonal activity patterns linked to physiology and reproduction. Here we evaluate whether ecological niche models fitted using microclimate data can predict temporal activity patterns using the Gila monster Heloderma suspectum as a study system. Furthermore, we identified whether the activity patterns are related to physiological constraints. We used dated occurrences from museum specimens and human observations to generate and test ecological niche models using minimum volume ellipsoids. We generated hourly microclimatic data for each occurrence site for 10 years using the NicheMapR package. For ecological niche modelling, we compared the traditional seasonal approach versus a daily activity pattern strategy for model construction. We tested both using the omission rate of independent observations (citizen science data). Finally, we tested whether unimodal and bimodal activity patterns for each season could be recreated through ecological niche modelling and whether these patterns followed known physiological constraints. The unimodal and bimodal activity patterns previously reported directly from tracking individuals across the year were recovered using niche modelling and microclimate across the species' geographical range. We found that upper thermal tolerances can explain the daily activity patterns of this species. We conclude that ecological niche models trained with microclimatic data can be used to predict activity patterns at high temporal resolutions, particularly on ectotherm species of arid zones coping with rapid climate modifications. Furthermore, the use of high temporal resolution variables can lead to a better niche delimitation, enhancing the results of any research objective that uses correlative models.


La estacionalidad climática es un fenómeno que afecta la actividad de las especies y los patrones de distribución a diferentes escalas espaciales y temporales. A pesar de la disponibilidad global de datos microclimáticos para estudiar dichos patrones, su uso sigue siendo escaso, particularmente en escalas temporales finas (e.g., < mes). La predicción de patrones de actividad basados en datos climáticos puede permitirnos prever algunas de las potenciales consecuencias del cambio climático, particularmente para los vertebrados ectotérmicos. El monstruo de Gila (Heloderma suspectum) exhibe marcados patrones de actividad diarios y estacionales vinculados a la fisiología y la reproducción. En este trabajo evaluamos cómo los modelos de nichos ecológicos ajustados con datos de microclima, pueden predecir patrones de actividad temporal, utilizando al monstruo de Gila como sistema de estudio. Además, identificamos si los patrones de actividad están relacionados con restricciones fisiológicas. Usamos registros de presencia provenientes de colecciones científicas y de ciencia ciudadana para generar y probar modelos de nichos ecológicos usando elipsoides de volumen mínimo. Generamos datos microclimáticos para cada hora en cada sitio de presencia durante diez años utilizando el paquete NicheMapR. Para el modelado de nichos ecológicos, comparamos el enfoque estacional tradicional con una estrategia de patrón de actividad diaria para la construcción del nicho. Ambos enfoques fueron probados utilizando la tasa de omisión de observaciones independientes (provenientes de datos de ciencia ciudadana). Finalmente, probamos si los patrones de actividad unimodales y bimodales para cada estación podían recrearse a través de modelos de nichos ecológicos y si estos patrones seguían restricciones fisiológicas conocidas. Los patrones de actividad unimodal y bimodal previamente informados directamente del seguimiento de individuos a lo largo del año, sí se recuperaron mediante el uso de modelos de nicho y microclimas en todo el rango geográfico de la especie. Encontramos también que las tolerancias térmicas superiores pueden explicar los patrones de actividad diaria de esta especie. Concluimos que los modelos de nichos ecológicos entrenados con datos microclimáticos pueden usarse para predecir patrones de actividad en altas resoluciones temporales, particularmente en especies ectotermas de zonas áridas que se enfrentan a modificaciones climáticas rápidas. Además, consideramos que el uso de variables con alta resolución temporal puede conducir a una mejor delimitación de nichos, mejorando los resultados de cualquier objetivo de investigación que utilice estos modelos correlativos.


Subject(s)
Ecosystem , Microclimate , Animals , Humans , Vertebrates , Models, Theoretical , Geography
2.
Proc Biol Sci ; 289(1989): 20221783, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36515116

ABSTRACT

Traits that exhibit differences between the sexes have been of special interest in the study of phenotypic evolution. Classic hypotheses explain sexually dimorphic traits via intra-sexual competition and mate selection, yet natural selection may also act differentially on the sexes to produce dimorphism. Natural selection can act either through physiological and ecological constraints on one of the sexes, or by modulating the strength of sexual/social selection. This predicts an association between the degree of dimorphism and variation in ecological environments. Here, we characterize the variation in hummingbird dimorphism across ecological gradients using rich databases of morphology, colouration and song. We show that morphological dimorphism decreases with elevation in the understorey and increases with elevation in mixed habitats, that dichromatism increases at high altitudes in open and mixed habitats, and that song is less complex in mixed habitats. Our results are consistent with flight constraints, lower predation pressure at high elevations and with habitat effects on song transmission. We also show that dichromatism and song complexity are positively associated, while tail dimorphism and song complexity are negatively associated. Our results suggest that key ecological factors shape sexually dimorphic traits, and that different communication modalities do not always evolve in tandem.


Subject(s)
Biological Evolution , Sexual Selection , Animals , Selection, Genetic , Ecosystem , Sex Characteristics , Birds
3.
Proc Natl Acad Sci U S A ; 119(34): e2122667119, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35972961

ABSTRACT

Field biology is an area of research that involves working directly with living organisms in situ through a practice known as "fieldwork." Conducting fieldwork often requires complex logistical planning within multiregional or multinational teams, interacting with local communities at field sites, and collaborative research led by one or a few of the core team members. However, existing power imbalances stemming from geopolitical history, discrimination, and professional position, among other factors, perpetuate inequities when conducting these research endeavors. After reflecting on our own research programs, we propose four general principles to guide equitable, inclusive, ethical, and safe practices in field biology: be collaborative, be respectful, be legal, and be safe. Although many biologists already structure their field programs around these principles or similar values, executing equitable research practices can prove challenging and requires careful consideration, especially by those in positions with relatively greater privilege. Based on experiences and input from a diverse group of global collaborators, we provide suggestions for action-oriented approaches to make field biology more equitable, with particular attention to how those with greater privilege can contribute. While we acknowledge that not all suggestions will be applicable to every institution or program, we hope that they will generate discussions and provide a baseline for training in proactive, equitable fieldwork practices.


Subject(s)
Bioethical Issues , Biology , Biology/ethics , Humans
4.
Life (Basel) ; 11(11)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34833058

ABSTRACT

Enceladus is a potential target for future astrobiological missions. NASA's Cassini spacecraft demonstrated that the Saturnian moon harbors a salty ocean beneath its icy crust and the existence and analysis of the plume suggest water-rock reactions, consistent with the possible presence of hydrothermal vents. Particularly, the plume analysis revealed the presence of molecular hydrogen, which may be used as an energy source by microorganisms ( e.g., methanogens). This could support the possibility that populations of methanogens could establish in such environments if they exist on Enceladus. We took a macroscale approximation using ecological niche modeling to evaluate whether conditions suitable for methanogenic archaea on Earth are expected in Enceladus. In addition, we employed a new approach for computing the biomass using the Monod growth model. The response curves for the environmental variables performed well statistically, indicating that simple correlative models may be used to approximate large-scale distributions of these genera on Earth. We found that the potential hydrothermal conditions on Enceladus fit within the macroscale conditions identified as suitable for methanogens on Earth, and estimated a concentration of 1010-1011 cells/cm3.

5.
Evolution ; 75(7): 1665-1680, 2021 07.
Article in English | MEDLINE | ID: mdl-34037257

ABSTRACT

A fascinating pattern in nature is the uneven distribution of biodiversity among clades, some with low species richness and phenotypic variation in contrast to others with remarkable species richness and phenotypic diversity. In animals, communication signals are crucial for intra- and interspecific interactions and are likely an important factor in speciation. However, evidence for the association between the evolution of such signals and speciation is mixed. In hummingbirds, plumage coloration is an important communication signal, particularly for mate selection. Here, using reflectance data for 237 hummingbird species (∼66% of total diversity), we demonstrate that color evolution rates are associated with speciation rates, and that differences among feather patches are consistent with an interplay between natural and sexual selection. We found that female color evolution rates of multiple plumage elements, including the gorget, were similar to those of males. Although male color evolution in this patch was associated with speciation, female gorget color evolution was not. In other patches, the relationship between speciation and color evolution rates was pervasive between sexes. We anticipate that future studies on animal communication will likely find that evolution of signaling traits of both sexes has played a vital role in generating signal and species diversity.


Subject(s)
Biological Evolution , Birds , Animal Communication , Animals , Birds/genetics , Color , Feathers , Female , Male , Phenotype , Pigmentation
6.
PLoS One ; 16(3): e0247876, 2021.
Article in English | MEDLINE | ID: mdl-33657168

ABSTRACT

Ecological niche models (ENMs) aim to recreate the relationships between species and the environments where they occur and allow us to identify unexplored areas in geography where these species might be present. These models have been successfully used in terrestrial organisms but their application in aquatic organisms is still scarce. Recent advances in the availability of species occurrences and environmental information particular to aquatic systems allow the evaluation of these models. This study aims to characterize the niche of the Sabaleta Brycon henni Eigenmann 1913, an endemic fish of the Colombian Andes, using ENMs to predict its geographical distribution across the Magdalena Basin. For this purpose, we used a set of environmental variables specific to freshwater systems in addition to the customary bioclimatic variables, and species' occurrence data to model its potential distribution using the Maximum Entropy algorithm (MaxEnt). We evaluate the relative importance between these two sets of variables, the model's performance, and its geographic overlap with the IUCN map. Both on-site (annual precipitation, minimum temperature of coldest month) and upstream variables (open waters, average minimum temperature of the coldest month and average precipitation seasonality) were included in the models with the highest predictive accuracy. With an area under the curve of 90%, 99% of the species occurrences and 68% of absences correctly predicted, our results support the good performance of ENMs to predict the potential distribution of the Sabaleta and the utility of this tool in conservation and decision-making at the national level.


Subject(s)
Aquatic Organisms , Ecosystem , Fishes , Animal Distribution , Animals , Aquatic Organisms/physiology , Fishes/physiology , Fresh Water , Models, Biological
7.
Evolution ; 74(2): 447-458, 2020 02.
Article in English | MEDLINE | ID: mdl-31922617

ABSTRACT

Understanding how animal signals are produced is critical for understanding their evolution because complexity and modularity in the underlying morphology can affect evolutionary patterns. Hummingbird feathers show some of the brightest and most iridescent colors in nature. These are produced by optically complex stacks of hollow, platelet-shaped organelles called melanosomes. Neither how these morphologies produce colors nor their evolution has been systematically studied. We first used nanoscale morphological measurements and optical modeling to identify the physical basis of color production in 34 hummingbird species. We found that, in general, the melanosome stacks function as multilayer reflectors, with platelet thickness and air space size explaining variation in hue (color) and saturation (color purity). Additionally, light rays reflected from the outer keratin surface interact with those reflected by small, superficial melanosomes to cause secondary reflectance peaks, primarily in short (blue) wavelengths. We then compared variation of both the morphological components and the colors they produce. The outer keratin cortex evolves independently and is more variable than other morphological traits, possibly due to functional constraints on melanosome packing. Intriguingly, shorter wavelength colors evolve faster than longer wavelength colors, perhaps due to developmental processes that enables greater lability of the shapes of small melanosomes. Together, these data indicate that increased structural complexity of feather tissues is associated with greater variation in morphology and iridescent coloration.


Subject(s)
Animal Communication , Biological Evolution , Birds/physiology , Feathers/physiology , Melanosomes/physiology , Animals , Birds/anatomy & histology , Color , Feathers/anatomy & histology , Pigmentation
8.
PeerJ ; 7: e7923, 2019.
Article in English | MEDLINE | ID: mdl-31637143

ABSTRACT

BACKGROUND: How species colonize new environments is still a fundamental question in ecology and evolution, assessable by evaluating range characteristics of invasive species. Here we propose a model approach to evaluate environmental conditions and species features to predict niche changes in non-equilibrium contexts. It incorporates potentially range-limiting processes (fundamental niche), hence allowing for better predictions of range shifts, differentiation of analog and non-analog conditions between the native and non-native (invaded) ranges, and identification of environmental conditions not currently available but likely in the future. We apply our approach with the worldwide invasive slider-turtle Trachemys scripta. METHODS: We estimated the native and non-native realized niches of T. scripta and built its fundamental niche based on key features of the turtle's temperature physiological tolerance limits and survival-associated factors. We next estimated response functions adjusted to the physiological predictor variables and estimated habitat suitability values, followed by a comprehensive set of analyses and simulations to compare the environmental conditions occupied by T. scripta (at its native and non-native ranges). RESULTS: Climatic space analysis showed that the T. scripta's non-native realized niche is 28.6% greater than the native one. Response curves showed that it does not use its entire range of temperature tolerances (density curves for native: 5.3-23.7 °C and non-native: 1.7-28.4 °C ranges). Whether considering the mean temperature of the warmest or the coldest quarter, it occupies a wider range of temperatures along its non-native distribution. Results of the response curves for worldwide (global) and across Mexico (regional) comparisons showed it occupies analog and non-analog conditions between its native and invaded ranges, exhibiting also unoccupied suitable climatic conditions. DISCUSSION: We demonstrate that T. scripta occupies a wider subset of its fundamental niche along its non-native range (within its physiological tolerances), revealing that the species observed niche shift corresponds to a different subset of its fundamental niche (niche unfilling). We also identified suitable environmental conditions, globally and regionally, where the slider turtle could potentially invade. Our approach allows to accurately predict niche changes in novel or non-equilibrium contexts, which can improve our understanding about ecological aspects and geographic range boundaries in current and potential invasions.

9.
Article in English | MEDLINE | ID: mdl-30298342

ABSTRACT

The male Anna's hummingbird features a brightly reddish-pink reflecting gorget, due to large stacks of melanosomes in the feather barbules, arranged in layers separated by keratin. Direct observations together with detailed scatterometry demonstrated that the barbules reflect incident light in an approximately specular manner. The structural colouration is iridescent, i.e. varies with a changing angle of light incidence. Spectrophotometrical measurements of the barbule reflectance and absorbance can be well interpreted with calculated spectra obtained with a transfer matrix method for optical multilayers, using anatomical data and measured refractive index spectra. The organization of the reflectors as a Venetian blind presumably functions to create a high spectral contrast of the male's plumage during courtship.


Subject(s)
Birds/anatomy & histology , Feathers/anatomy & histology , Pigmentation , Animals , Feathers/chemistry , Iridescence , Male , Microscopy, Electrochemical, Scanning , Models, Theoretical , Spectrophotometry
10.
Ecology ; 99(7): 1693, 2018 07.
Article in English | MEDLINE | ID: mdl-29701245

ABSTRACT

Colombia is the country with the highest bird diversity in the world. Despite active research in ornithology, compelling morphological information of most bird species is still sparse. However, morphological information is the baseline to understand how species respond to environmental variation and how ecosystems respond to species loss. As part of a national initiative, the Instituto Alexander von Humboldt in collaboration with 12 Colombian institutions and seven biological collections, measured up to 15 morphological traits of 9,892 individuals corresponding to 606 species: 3,492 from individuals captured in field and 6,400 from museum specimens. Species measured are mainly distributed in high Andean forest, páramo, and wetland ecosystems. Seven ornithological collections in Colombia and 18 páramo complexes throughout Colombia were visited from 2013 to 2015. The morphological traits involved measurements from bill (total and exposed culmen, bill width and depth), wing (length, area, wingspan, and the distance between longest primary and longest secondary), tail (length and shape), tarsus (length), hallux (length and claw hallux), and mass. The number of measured specimens per species was variable, ranging from 1 to 321 individuals with a median of four individuals per species. Overall, this database gathered morphological information for >30% of Colombian bird diversity. No copyright, proprietary, or cost restrictions apply; the data should be cited appropriately when used.


Subject(s)
Birds , Ecosystem , Animals , Colombia , Phenotype , Wetlands
11.
Mol Ecol ; 26(19): 5223-5244, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28753250

ABSTRACT

Organismal traits interact with environmental variation to mediate how species respond to shared landscapes. Thus, differences in traits related to dispersal ability or physiological tolerance may result in phylogeographic discordance among co-distributed taxa, even when they are responding to common barriers. We quantified climatic suitability and stability, and phylogeographic divergence within three reed frog species complexes across the Guineo-Congolian forests and Gulf of Guinea archipelago of Central Africa to investigate how they responded to a shared climatic and geological history. Our species-specific estimates of climatic suitability through time are consistent with temporal and spatial heterogeneity in diversification among the species complexes, indicating that differences in ecological breadth may partly explain these idiosyncratic patterns. Likewise, we demonstrated that fluctuating sea levels periodically exposed a land bridge connecting Bioko Island with the mainland Guineo-Congolian forest and that habitats across the exposed land bridge likely enabled dispersal in some species, but not in others. We did not find evidence that rivers are biogeographic barriers across any of the species complexes. Despite marked differences in the geographic extent of stable climates and temporal estimates of divergence among the species complexes, we recovered a shared pattern of intermittent climatic suitability with recent population connectivity and demographic expansion across the Congo Basin. This pattern supports the hypothesis that genetic exchange across the Congo Basin during humid periods, followed by vicariance during arid periods, has shaped regional diversity. Finally, we identified many distinct lineages among our focal taxa, some of which may reflect incipient or unrecognized species.


Subject(s)
Anura/classification , Biological Evolution , Climate Change , Forests , Phylogeny , Africa, Central , Animals , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Female , Guinea , Islands , Male , Models, Biological , Phenotype , Phylogeography
12.
PLoS One ; 12(6): e0179093, 2017.
Article in English | MEDLINE | ID: mdl-28594942

ABSTRACT

Rapid transformation of natural ecosystems changes ecological conditions for important human disease vector species; therefore, an essential task is to identify and understand the variables that shape distributions of these species to optimize efforts toward control and mitigation. Ecological niche modeling was used to estimate the potential distribution and to assess hypotheses of niche similarity among the three main malaria vector species in northern Colombia: Anopheles nuneztovari, An. albimanus, and An. darlingi. Georeferenced point collection data and remotely sensed, fine-resolution satellite imagery were integrated across the Urabá -Bajo Cauca-Alto Sinú malaria endemic area using a maximum entropy algorithm. Results showed that An. nuneztovari has the widest geographic distribution, occupying almost the entire study region; this niche breadth is probably related to the ability of this species to colonize both, natural and disturbed environments. The model for An. darlingi showed that most suitable localities for this species in Bajo Cauca were along the Cauca and Nechí river. The riparian ecosystems in this region and the potential for rapid adaptation by this species to novel environments, may favor the establishment of populations of this species. Apparently, the three main Colombian Anopheles vector species in this endemic area do not occupy environments either with high seasonality, or with low seasonality and high NDVI values. Estimated overlap in geographic space between An. nuneztovari and An. albimanus indicated broad spatial and environmental similarity between these species. An. nuneztovari has a broader niche and potential distribution. Dispersal ability of these species and their ability to occupy diverse environmental situations may facilitate sympatry across many environmental and geographic contexts. These model results may be useful for the design and implementation of malaria species-specific vector control interventions optimized for this important malaria region.


Subject(s)
Endemic Diseases/statistics & numerical data , Malaria/epidemiology , Malaria/parasitology , Mosquito Vectors/physiology , Animals , Colombia/epidemiology , Ecosystem , Geography , Models, Theoretical , Principal Component Analysis , Species Specificity
13.
Am Nat ; 187(1): 75-88, 2016 Jan.
Article in English | MEDLINE | ID: mdl-27277404

ABSTRACT

A persistent challenge in ecology is to tease apart the influence of multiple processes acting simultaneously and interacting in complex ways to shape the structure of species assemblages. We implement a heuristic approach that relies on explicitly defining species pools and permits assessment of the relative influence of the main processes thought to shape assemblage structure: environmental filtering, dispersal limitations, and biotic interactions. We illustrate our approach using data on the assemblage composition and geographic distribution of hummingbirds, a comprehensive phylogeny and morphological traits. The implementation of several process-based species pool definitions in null models suggests that temperature-but not precipitation or dispersal limitation-acts as the main regional filter of assemblage structure. Incorporating this environmental filter directly into the definition of assemblage-specific species pools revealed an otherwise hidden pattern of phylogenetic evenness, indicating that biotic interactions might further influence hummingbird assemblage structure. Such hidden patterns of assemblage structure call for a reexamination of a multitude of phylogenetic- and trait-based studies that did not explicitly consider potentially important processes in their definition of the species pool. Our heuristic approach provides a transparent way to explore patterns and refine interpretations of the underlying causes of assemblage structure.


Subject(s)
Birds/physiology , Ecosystem , Temperature , Animal Distribution , Animals , Environment , Geography , Phylogeny , Rain , South America
14.
PLoS One ; 7(4): e35472, 2012.
Article in English | MEDLINE | ID: mdl-22558157

ABSTRACT

Patterns of phylogenetic structure of assemblages are increasingly used to gain insight into the ecological and evolutionary processes involved in the assembly of co-occurring species. Metrics of phylogenetic structure can be sensitive to scaling issues and data availability. Here we empirically assess the sensitivity of four metrics of phylogenetic structure of assemblages to changes in (i) the source of data, (ii) the spatial grain at which assemblages are defined, and (iii) the definition of species pools using hummingbird (Trochilidae) assemblages along an elevational gradient in Colombia. We also discuss some of the implications in terms of the potential mechanisms driving these patterns. To explore how source of data influence phylogenetic structure we defined assemblages using three sources of data: field inventories, museum specimens, and range maps. Assemblages were defined at two spatial grains: coarse-grained (elevational bands of 800-m width) and fine-grained (1-km(2) plots). We used three different species pools: all species contained in assemblages, all species within half-degree quadrats, and all species either above or below 2000 m elevation. Metrics considering phylogenetic relationships among all species within assemblages showed phylogenetic clustering at high elevations and phylogenetic evenness in the lowlands, whereas those metrics considering only the closest co-occurring relatives showed the opposite trend. This result suggests that using multiple metrics of phylogenetic structure should provide greater insight into the mechanisms shaping assemblage structure. The source and spatial grain of data had important influences on estimates of both richness and phylogenetic structure. Metrics considering the co-occurrence of close relatives were particularly sensitive to changes in the spatial grain. Assemblages based on range maps included more species and showed less phylogenetic structure than assemblages based on museum or field inventories. Coarse-grained assemblages included more distantly related species and thus showed a more even phylogenetic structure than fine-grained assemblages. Our results emphasize the importance of carefully selecting the scale, source of data and metric used in analysis of the phylogenetic structure of assemblages.


Subject(s)
Altitude , Birds/genetics , Demography , Ecosystem , Phylogeny , Analysis of Variance , Animals , Bayes Theorem , Colombia , Computational Biology , Models, Genetic , Museums , Phylogeography , Species Specificity
15.
Am Nat ; 176(5): 573-87, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20849270

ABSTRACT

An important challenge in community ecology is to determine how processes occurring at multiple spatial, temporal, and phylogenetic scales influence the structure of local communities. While indexes of phylogenetic structure, which measure how related species are in a community, provide insight into the processes that shape species coexistence, they fail to pinpoint the phylogenetic scales at which those processes occur. Here, we explore a framework to identify the species and clades responsible for the inferred patterns of phylogenetic structure within a given community. Further, we evaluate how communities that share the nonrandom representation of species from a given clade in the phylogeny are distributed across geography and environmental gradients. Using Ecuadorian hummingbird communities, we found that multiple patterns of phylogenetic structure often occur within a local assemblage. We also identified four geographic regions where species from certain clades exhibit nonrandom representation: the eastern Amazonian lowlands, the western dry lowlands, the Andes at middle elevations, and the Andes at high elevations. The environmental gradients along which changes in the local coexistence of species occurred were mainly elevation, annual precipitation, and seasonality in both temperature and precipitation. Finally, we show how these patterns can be used to generate hypotheses about the processes that allow species coexistence.


Subject(s)
Birds/physiology , Models, Biological , Phylogeny , Algorithms , Animals , Birds/classification , Ecuador , Environment , Geography , Population Dynamics
16.
Mol Ecol ; 19(12): 2531-44, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20497322

ABSTRACT

Globally, montane tropical diversity is characterized by extraordinary local endemism that is not readily explained by current environmental variables indicating a strong imprint of history. Montane species often exist as isolated populations under current climatic conditions and may have remained isolated throughout recent climatic cycles, leading to substantial genetic and phenotypic divergence. Alternatively, populations may have become contiguous during colder climates resulting in less divergence. Here we compare responses to historical climate fluctuation in a montane specialist skink, Lampropholis robertsi, and its more broadly distributed congener, L. coggeri, both endemic to rainforests of northeast Australia. To do so, we combine spatial modelling of potential distributions under representative palaeoclimates, multi-locus phylogeography and analyses of phenotypic variation. Spatial modelling of L. robertsi predicts strong isolation among disjunct montane refugia during warm climates, but with potential for localized exchange during the most recent glacial period. In contrast, predicted stable areas are more widespread and connected in L. coggeri. Both species exhibit pronounced phylogeographic structuring for mitochondrial and nuclear genes, attesting to low dispersal and high persistence across multiple isolated regions. This is most prominent in L. robertsi, for which coalescent analyses indicate that most populations persisted in isolation throughout the climate cycles of the Pleistocene. Morphological divergence, principally in body size, is more evident among isolated populations of L. robertsi than L. coggeri. These results highlight the biodiversity value of isolated montane populations and support the general hypothesis that tropical montane regions harbour high levels of narrow-range taxa because of their resilience to past climate change.


Subject(s)
Climate Change , Lizards/genetics , Phylogeny , Animals , Australia , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Genetic Variation , Geography , Lizards/classification , Models, Genetic , Sequence Analysis, DNA
17.
Proc Natl Acad Sci U S A ; 106 Suppl 2: 19673-8, 2009 Nov 17.
Article in English | MEDLINE | ID: mdl-19805042

ABSTRACT

How biotic interactions, current and historical environment, and biogeographic barriers determine community structure is a fundamental question in ecology and evolution, especially in diverse tropical regions. To evaluate patterns of local and regional diversity, we quantified the phylogenetic composition of 189 hummingbird communities in Ecuador. We assessed how species and phylogenetic composition changed along environmental gradients and across biogeographic barriers. We show that humid, low-elevation communities are phylogenetically overdispersed (coexistence of distant relatives), a pattern that is consistent with the idea that competition influences the local composition of hummingbirds. At higher elevations communities are phylogenetically clustered (coexistence of close relatives), consistent with the expectation of environmental filtering, which may result from the challenge of sustaining an expensive means of locomotion at high elevations. We found that communities in the lowlands on opposite sides of the Andes tend to be phylogenetically similar despite their large differences in species composition, a pattern implicating the Andes as an important dispersal barrier. In contrast, along the steep environmental gradient between the lowlands and the Andes we found evidence that species turnover is comprised of relatively distantly related species. The integration of local and regional patterns of diversity across environmental gradients and biogeographic barriers provides insight into the potential underlying mechanisms that have shaped community composition and phylogenetic diversity in one of the most species-rich, complex regions of the world.


Subject(s)
Biodiversity , Birds/physiology , Phylogeny , Animals , Ecuador , Molecular Sequence Data , Tropical Climate
18.
Science ; 322(5899): 261-4, 2008 Oct 10.
Article in English | MEDLINE | ID: mdl-18845755

ABSTRACT

We provide a century-scale view of small-mammal responses to global warming, without confounding effects of land-use change, by repeating Grinnell's early-20th century survey across a 3000-meter-elevation gradient that spans Yosemite National Park, California, USA. Using occupancy modeling to control for variation in detectability, we show substantial ( approximately 500 meters on average) upward changes in elevational limits for half of 28 species monitored, consistent with the observed approximately 3 degrees C increase in minimum temperatures. Formerly low-elevation species expanded their ranges and high-elevation species contracted theirs, leading to changed community composition at mid- and high elevations. Elevational replacement among congeners changed because species' responses were idiosyncratic. Though some high-elevation species are threatened, protection of elevation gradients allows other species to respond via migration.


Subject(s)
Biodiversity , Climate , Ecosystem , Greenhouse Effect , Mammals , Acclimatization , Altitude , Animal Migration , Animals , California , Population Dynamics , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...