Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
MethodsX ; 10: 102161, 2023.
Article in English | MEDLINE | ID: mdl-37077891

ABSTRACT

Magnetic nanoparticles are of great interest for research as they have a wide range of applications in biotechnology, environmental science, and biomedicine. Magnetic nanoparticles are ideal for magnetic separation, improving catalysis's speed and reusability by immobilizing enzymes. Nanobiocatalysis allows the removal of persistent pollutants in a viable, cost-effective and eco-friendly manner, transforming several hazardous compounds in water into less toxic derivatives. Iron oxide and graphene oxide are the preferred materials used to confer nanomaterials their magnetic properties for this purpose as they pair well with enzymes due to their biocompatibility and functional properties. This review describes the most common synthesis methods for magnetic nanoparticles and their performance of nanobiocatalysis for the degradation of pollutants in water.•Magnetic nanomaterials have been synthesized for their application in nanobiocatalysis and treating groundwater.•The most used method for magnetic nanoparticle preparation is the co-precipitation technique.•Peroxidase and oxidase enzymes have great potential in the remotion of multiple contaminants from groundwater.

2.
MethodsX ; 10: 102160, 2023.
Article in English | MEDLINE | ID: mdl-37095869

ABSTRACT

Emerging pollutants (EPs) are a group of different contaminants, such as hormones, pesticides, heavy metals, and drugs, usually found in concentrations between the order of ng and µg per liter. The global population's daily city and agro-industrial activities release EPs into the environment.  Due to the chemical nature of EPs and deficient wastewater treatment and management, they are transported to superficial and groundwater through the natural water cycle, where they can potentially cause harmful effects on living organisms. Recent efforts have focused on developing technology that allows EPs quantification and monitoring in real-time and in situ. The newly developed technology aims to provide accessible groundwater management that detects and treats EPs while avoiding their contact with living beings and their toxic effects. This review presents some of the recently reported techniques that have been applied to advance the detection of EPs in groundwater and potential technologies that can be used for EP removal.

3.
Plants (Basel) ; 11(20)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36297767

ABSTRACT

Hemileia vastatrix (HV) is the pathogen responsible for the coffee leaf rust (CLR) disease that has spread globally. CLR causes losses of up to a billion dollars annually and affects all types of crops regardless of their production regime (organic or inorganic). Additionally, smallholders produce approximately 80% of coffee in developing countries. The condition causes losses of up to a billion dollars annually. It affects all types of crops regardless of their production regime (organic or inorganic). Approximately 80% of coffee is produced by smallholders in developing countries. Until the 90s, shaded-production systems and native varieties were encouraged; however, the rapid spread of CLR has forced farmers to migrate towards inorganic schemes, mainly due to a lack of knowledge about natural alternatives to pesticides that can be implemented to control HV. Therefore, the purpose of this article is to compile the currently existing options, emphasizing two key factors that guarantee efficient rust control: selective fungicidal activity against HV and the nutrition of coffee crops. Thus, by comprehending how these natural compounds (such as plant, bacteria, fungi, animals, or algae metabolites) impact coffee rust proliferation. Furthermore, since a various range of biochar effects contributes to the control of foliar fungal pathogens through modification of root exudates, soil properties, and nutrient availability, which influence the growth of antagonist microorganisms, we present a review of the pathogen-suppressive effects of biochar, and new control strategies suitable for organic schemes can be developed.

4.
Molecules ; 27(15)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35956931

ABSTRACT

Bionanocomposites based on natural bioactive entities have gained importance due to their abundance; renewable and environmentally benign nature; and outstanding properties with applied perspective. Additionally, their formulation with biological molecules with antimicrobial, antioxidant, and anticancer activities has been produced nowadays. The present review details the state of the art and the importance of this pyrrolic compound produced by microorganisms, with interest towards Serratia marcescens, including production strategies at a laboratory level and scale-up to bioreactors. Promising results of its biological activity have been reported to date, and the advances and applications in bionanocomposites are the most recent strategy to potentiate and to obtain new carriers for the transport and controlled release of prodigiosin. Prodigiosin, a bioactive secondary metabolite, produced by Serratia marcescens, is an effective proapoptotic agent against bacterial and fungal strains as well as cancer cell lines. Furthermore, this molecule presents antioxidant activity, which makes it ideal for treating wounds and promoting the general improvement of the immune system. Likewise, some of the characteristics of prodigiosin, such as hydrophobicity, limit its use for medical and biotechnological applications; however, this can be overcome by using it as a component of a bionanocomposite. This review focuses on the chemistry and the structure of the bionanocomposites currently developed using biorenewable resources. Moreover, the work illuminates recent developments in pyrrole-based bionanocomposites, with special insight to its application in the medical area.


Subject(s)
Nanocomposites , Prodigiosin , Anti-Bacterial Agents/chemistry , Bioreactors , Prodigiosin/chemistry , Prodigiosin/pharmacology , Serratia marcescens/chemistry
5.
Trends Analyt Chem ; 155: 116585, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35281332

ABSTRACT

Wastewater-Based Epidemiology (WBE) is a novel community-wide monitoring tool that provides comprehensive real-time data of the public and environmental health status and can contribute to public health interventions, including those related to infectious disease outbreaks (e.g., the ongoing COVID-19 pandemic). Nonetheless, municipalities without centralized laboratories are likely still not able to process WBE samples. Biosensors are a potentially cost-effective solution to monitor the development of diseases through WBE to prevent local outbreaks. This review discusses the economic and technical feasibility of eighteen recently developed biosensors for the detection and monitoring of infectious disease agents in wastewater, prospecting the prevention of future pandemics.

6.
Polymers (Basel) ; 14(6)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35335534

ABSTRACT

Plastics have become an essential part of the modern world thanks to their appealing physical and chemical properties as well as their low production cost. The most common type of polymers used for plastic account for 90% of the total production and are made from petroleum-based nonrenewable resources. Concerns over the sustainability of the current production model and the environmental implications of traditional plastics have fueled the demand for greener formulations and alternatives. In the last decade, new plastics manufactured from renewable sources and biological processes have emerged from research and have been established as a commercially viable solution with less adverse effects. Nevertheless, economic and legislative challenges for biobased plastics hinder their widespread implementation. This review summarizes the history of plastics over the last century, including the most relevant bioplastics and production methods, the environmental impact and mitigation of the adverse effects of conventional and emerging plastics, and the regulatory landscape that renewable and recyclable bioplastics face to reach a sustainable future.

7.
Sci Total Environ ; 807(Pt 3): 151879, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34826476

ABSTRACT

The pervasive manifestation and toxicological influence of hazardous pesticides pose adverse consequences on various environmental matrices and humans, directly via bioaccumulation or indirectly through the food chain. Due to pesticide residues' continuous presence above permissible levels in multiple forms, much attention has been given to re-evaluating to regulate their usage practices without harming or affecting the environment. However, there are regulations in place banning the use of multiple hazardous pesticides in the environment. Thus, efforts must be made to achieve robust detection and complete mitigation of pesticides, possibly through a combination of new and conventional methods. The complex nature of pesticides helps them to react differently across different environmental matrices. Therefore, highly hazardous pesticides are a risk to human well-being and the environment through enzymatic inhibition and the induction of oxidative stress. Consequently, developing fast, sensitive sensing strategies is essential to detect and quantify multiple pesticides and remove the pesticides present in the specific matrix without creating harmful derivatives. Additionally, the technology should be available worldwide to eliminate pesticide residuals from the environment. There are regulations, in practice, that limit the selling, storage, use of pesticides, and their concentration in the environment, although such regulations must be revised. However, the existing literature lacks regulatory, analytical detection, and mitigation considerations for pesticide remediation. Furthermore, the enforcement of such regulations and strict monitoring of pesticides in developing countries are needed. This review spotlights various analytical detection, regulatory, and mitigation considerations for efficiently removing hazardous pesticides.


Subject(s)
Environmental Pollutants , Pesticide Residues , Pesticides , Food Chain , Humans
8.
Int J Biol Macromol ; 194: 676-687, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34813781

ABSTRACT

Nanozymes, novel engineered nanomaterial-based artificial enzymes, have been developed to overcome intrinsic drawbacks exist in natural enzymes including high-cost storage, structural instability, and chemical sensitivity. More recently, carbon dots (CDs) have received significant attention due to their biocompatibility, high catalytic activity, and simple surface functionalization, thus emerging as possible alternatives for biomedical and environmental applications. In this review, we analyze methods and precursors used to synthesize CDs with enzyme-mimicking behaviors. In addition, approaches such as doping or constructing hybrid nanozymes are included as possible strategies to enhance the catalytic performance of CDs. Recent studies have reported CDs that mimic different oxidoreductases, exhibiting peroxidase-, catalase-, oxidase/laccase-, and superoxide dismutase-like activities. Therefore, this review presents a detailed discussion of the mechanism, recent advances, and application for each oxidoreductase-like activity reported on nanozymes based on CDs nanomaterials. Finally, current challenges faced in the successful translation of CDs to potential applications are addressed to suggest research directions.


Subject(s)
Biomimetics/methods , Carbon/chemistry , Enzymes/chemistry , Nanostructures/chemistry , Catalysis
9.
Plants (Basel) ; 10(2)2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33672994

ABSTRACT

Cacti fruits are known to possess antioxidant and antiproliferative activities among other health benefits. The following paper evaluated the antioxidant capacity and bioactivity of five clarified juices from different cacti fruits (Stenocereus spp., Opuntia spp. and M. geomettizans) on four cancer cell lines as well as one normal cell line. Their antioxidant compositions were measured by three different protocols. Their phenolic compositions were quantified through high performance liquid chromatography and the percentages of cell proliferation of fibroblasts as well as breast, prostate, colorectal, and liver cancer cell lines were evaluated though in vitro assays. The results were further processed by principal component analysis. The clarified juice from M. geomettizans fruit showed the highest concentration of total phenolic compounds and induced cell death in liver and colorectal cancer cells lines as well as fibroblasts. The clarified juice extracted from yellow Opuntia ficus-indica fruit displayed antioxidant activity as well as a selective cytotoxic effect on a liver cancer cell line with no toxic effect on fibroblasts. In conclusion, the work supplies evidence on the antioxidant and antiproliferative activities that cacti juices possess, presenting potential as cancer cell proliferation preventing agents.

10.
Sci Total Environ ; 757: 143722, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33221013

ABSTRACT

Antidepressants are drugs with a direct action on the brain's biochemistry through their interaction with the neurotransmitters, such as dopamine, norepinephrine, and serotonin. The increasing worldwide contamination from these drugs may be witnessed through their increasing presence in the urban water cycle. Furthermore, their occurrence has been detected in non-urban water, such as rivers and oceans. Some endemic aquatic animals, such as certain fish and mollusks, have bioaccumulated different antidepressant drugs in their tissues. This problem will increase in the years to come because the present COVID-19 pandemic has increased the general worldwide occurrence of depression and anxiety, triggering the consumption of antidepressants and, consequently, their presence in the environment. This work provides information on the occurrence of the most administrated antidepressants in urban waters, wastewater treatment plants, rivers, and oceans. Furthermore, it provides an overview of the analytical approaches currently used to detect each antidepressant presented. Finally, the ecotoxicological effect of antidepressants on several in vivo models are listed. Considering the information provided in this review, there is an urgent need to test the presence of antidepressant members of the MAOI and TCA groups. Furthermore, incorporating new degradation/immobilization technologies in WWTPs will be useful to stop the increasing occurrence of these drugs in the environment.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Antidepressive Agents , Environmental Monitoring , Humans , Pandemics , Rivers , SARS-CoV-2 , Wastewater/analysis , Water Pollutants, Chemical/analysis
11.
Mar Drugs ; 17(3)2019 Mar 18.
Article in English | MEDLINE | ID: mdl-30889823

ABSTRACT

In recent years, the demand for naturally derived products has hiked with enormous pressure to propose or develop state-of-the-art strategies to meet sustainable circular economy challenges. Microalgae possess the flexibility to produce a variety of high-value products of industrial interests. From pigments such as phycobilins or lutein to phycotoxins and several polyunsaturated fatty acids (PUFAs), microalgae have the potential to become the primary producers for the pharmaceutical, food, and agronomical industries. Also, microalgae require minimal resources to grow due to their autotrophic nature or by consuming waste matter, while allowing for the extraction of several valuable side products such as hydrogen gas and biodiesel in a single process, following a biorefinery agenda. From a Mexican microalgae biodiversity perspective, more than 70 different local species have been characterized and isolated, whereas, only a minimal amount has been explored to produce commercially valuable products, thus ignoring their potential as a locally available resource. In this paper, we discuss the microalgae diversity present in Mexico with their current applications and potential, while expanding on their future applications in bioengineering along with other industrial sectors. In conclusion, the use of available microalgae to produce biochemically revenuable products currently represents an untapped potential that could lead to the solution of several problems through green technologies. As such, if the social, industrial and research communities collaborate to strive towards a greener economy by preserving the existing biodiversity and optimizing the use of the currently available resources, the enrichment of our society and the solution to several environmental problems could be attained.


Subject(s)
Biodiversity , Bioengineering/methods , Biological Products/chemistry , Microalgae/chemistry , Sustainable Growth , Biofuels , Biomass , Mexico
SELECTION OF CITATIONS
SEARCH DETAIL
...