Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Insect Mol Biol ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847568

ABSTRACT

In this study, we identified and assembled a strain of American nodavirus (ANV) in the Phlebotomus papatasi-derived PP9ad cell line. This strain most closely resembles Flock House virus and ANV identified in the Drosophila melanogaster S2/S2R cell line. Through small RNA sequencing and analysis, we demonstrate that ANV replication in PP9ad cells is primarily targeted by the exogenous small interfering RNA (exo-siRNA) pathway, with minimal engagement from the PIWI-interacting RNA (piRNA) pathway. In mosquitoes such as Aedes and Culex, the PIWI pathway is expanded and specialised, which actively limits virus replication. This is unlike in Drosophila spp., where the piRNA pathway does not restrict viral replication. In Lutzomyia sandflies (family Psychodidae), close relatives of Phlebotomus species and Drosophila, there appears to be an absence of virus-derived piRNAs. To investigate whether this absence is due to a lack of PIWI pathway proteins, we analysed the piRNA and siRNA diversity and repertoire in PP9ad cells. Previous assemblies of P. papatasi genome (Ppap_1.0) have revealed a patchy repertoire of the siRNA and piRNA pathways. Our analysis of the updated P. papatasi genome (Ppap_2.1) has shown no PIWI protein expansion in sandflies. We found that both siRNA and piRNA pathways are transcriptionally active in PP9ad cells, with genomic mapping of small RNAs generating typical piRNA signatures. Our results suggest that the piRNA pathway may not respond to virus replication in these cells, but an antiviral response is mounted via the exo-siRNA pathway.

2.
J Gen Virol ; 105(5)2024 May.
Article in English | MEDLINE | ID: mdl-38809251

ABSTRACT

Tick-borne orthoflaviviruses (TBFs) are classified into three conventional groups based on genetics and ecology: mammalian, seabird and probable-TBF group. Recently, a fourth basal group has been identified in Rhipicephalus ticks from Africa: Mpulungu flavivirus (MPFV) in Zambia and Ngoye virus (NGOV) in Senegal. Despite attempts, isolating these viruses in vertebrate and invertebrate cell lines or intracerebral injection of newborn mice with virus-containing homogenates has remained unsuccessful. In this study, we report the discovery of Xinyang flavivirus (XiFV) in Haemaphysalis flava ticks from Xìnyáng, Henan Province, China. Phylogenetic analysis shows that XiFV was most closely related to MPFV and NGOV, marking the first identification of this tick orthoflavivirus group in Asia. We developed a reverse transcriptase quantitative PCR assay to screen wild-collected ticks and egg clutches, with absolute infection rates of 20.75 % in adult females and 15.19 % in egg clutches, suggesting that XiFV could be potentially spread through transovarial transmission. To examine potential host range, dinucleotide composition analyses revealed that XiFV, MPFV and NGOV share a closer composition to classical insect-specific orthoflaviviruses than to vertebrate-infecting TBFs, suggesting that XiFV could be a tick-only orthoflavivirus. Additionally, both XiFV and MPFV lack a furin cleavage site in the prM protein, unlike other TBFs, suggesting these viruses might exist towards a biased immature particle state. To examine this, chimeric Binjari virus with XIFV-prME (bXiFV) was generated, purified and analysed by SDS-PAGE and negative-stain transmission electron microscopy, suggesting prototypical orthoflavivirus size (~50 nm) and bias towards uncleaved prM. In silico structural analyses of the 3'-untranslated regions show that XiFV forms up to five pseudo-knot-containing stem-loops and a prototypical orthoflavivirus dumbbell element, suggesting the potential for multiple exoribonuclease-resistant RNA structures.


Subject(s)
Flavivirus , Ixodidae , Phylogeny , Animals , Flavivirus/genetics , Flavivirus/classification , Flavivirus/isolation & purification , China , Ixodidae/virology , Female
3.
Glycobiology ; 34(2)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38048640

ABSTRACT

The emergence of SARS-CoV-2 variants alters the efficacy of existing immunity towards the viral spike protein, whether acquired from infection or vaccination. Mutations that impact N-glycosylation of spike may be particularly important in influencing antigenicity, but their consequences are difficult to predict. Here, we compare the glycosylation profiles and antigenicity of recombinant viral spike of ancestral Wu-1 and the Gamma strain, which has two additional N-glycosylation sites due to amino acid substitutions in the N-terminal domain (NTD). We found that a mutation at residue 20 from threonine to asparagine within the NTD caused the loss of NTD-specific antibody COVA2-17 binding. Glycan site-occupancy analyses revealed that the mutation resulted in N-glycosylation switching to the new sequon at N20 from the native N17 site. Site-specific glycosylation profiles demonstrated distinct glycoform differences between Wu-1, Gamma, and selected NTD variant spike proteins, but these did not affect antibody binding. Finally, we evaluated the specificity of spike proteins against convalescent COVID-19 sera and found reduced cross-reactivity against some mutants, but not Gamma spike compared to Wuhan spike. Our results illustrate the impact of viral divergence on spike glycosylation and SARS-CoV-2 antibody binding profiles.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Glycosylation , Spike Glycoprotein, Coronavirus , Antibodies, Viral
4.
Front Microbiol ; 14: 1320856, 2023.
Article in English | MEDLINE | ID: mdl-38075874

ABSTRACT

The reduced pathogenicity of the omicron BA.1 sub-lineage compared to earlier variants is well described, although whether such attenuation is retained for later variants like BA.5 and XBB remains controversial. We show that BA.5 and XBB isolates were significantly more pathogenic in K18-hACE2 mice than a BA.1 isolate, showing increased neurotropic potential, resulting in fulminant brain infection and mortality, similar to that seen for original ancestral isolates. BA.5 also infected human cortical brain organoids to a greater extent than the BA.1 and original ancestral isolates. In the brains of mice, neurons were the main target of infection, and in human organoids neuronal progenitor cells and immature neurons were infected. The results herein suggest that evolving omicron variants may have increasing neurotropic potential.

5.
J Gen Virol ; 104(12)2023 12.
Article in English | MEDLINE | ID: mdl-38059479

ABSTRACT

Flavivirids are small, enveloped, positive-sense RNA viruses from the family Flaviviridae with genomes of ~9-13 kb. Metatranscriptomic analyses of metazoan organisms have revealed a diversity of flavivirus-like or flavivirid viral sequences in fish and marine invertebrate groups. However, no flavivirus-like virus has been identified in amphibians. To remedy this, we investigated the virome of the European common frog (Rana temporaria) in the UK, utilizing high-throughput sequencing at six catch locations. De novo assembly revealed a coding-complete virus contig of a novel flavivirid ~11.2 kb in length. The virus encodes a single ORF of 3456 aa and 5' and 3' untranslated regions (UTRs) of 227 and 666 nt, respectively. We named this virus Rana tamanavirus (RaTV), as BLASTp analysis of the polyprotein showed the closest relationships to Tamana bat virus (TABV) and Cyclopterus lumpus virus from Pteronotus parnellii and Cyclopterus lumpus, respectively. Phylogenetic analysis of the RaTV polyprotein compared to Flavivirus and Flavivirus-like members indicated that RaTV was sufficiently divergent and basal to the vertebrate Tamanavirus clade. In addition to the Mitcham strain, partial but divergent RaTV, sharing 95.64-97.39 % pairwise nucleotide identity, were also obtained from the Poole and Deal samples, indicating that RaTV is widespread in UK frog samples. Bioinformatic analyses of predicted secondary structures in the 3'UTR of RaTV showed the presence of an exoribonuclease-resistant RNA (xrRNA) structure standard in flaviviruses and TABV. To examine this biochemically, we conducted an in vitro Xrn1 digestion assay showing that RaTV probably forms a functional Xrn1-resistant xrRNA.


Subject(s)
Flaviviridae , Flavivirus , Animals , Flaviviridae/genetics , Rana temporaria/genetics , Phylogeny , RNA, Viral/genetics , RNA, Viral/chemistry , Flavivirus/genetics , Polyproteins/genetics , United Kingdom , Genome, Viral
6.
Nat Aging ; 3(12): 1561-1575, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37957361

ABSTRACT

Aging is a major risk factor for neurodegenerative diseases, and coronavirus disease 2019 (COVID-19) is linked to severe neurological manifestations. Senescent cells contribute to brain aging, but the impact of virus-induced senescence on neuropathologies is unknown. Here we show that senescent cells accumulate in aged human brain organoids and that senolytics reduce age-related inflammation and rejuvenate transcriptomic aging clocks. In postmortem brains of patients with severe COVID-19 we observed increased senescent cell accumulation compared with age-matched controls. Exposure of human brain organoids to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induced cellular senescence, and transcriptomic analysis revealed a unique SARS-CoV-2 inflammatory signature. Senolytic treatment of infected brain organoids blocked viral replication and prevented senescence in distinct neuronal populations. In human-ACE2-overexpressing mice, senolytics improved COVID-19 clinical outcomes, promoted dopaminergic neuron survival and alleviated viral and proinflammatory gene expression. Collectively our results demonstrate an important role for cellular senescence in driving brain aging and SARS-CoV-2-induced neuropathology, and a therapeutic benefit of senolytic treatments.


Subject(s)
COVID-19 , Humans , Mice , Animals , Aged , Senotherapeutics , SARS-CoV-2 , Aging , Brain
7.
Proc Natl Acad Sci U S A ; 120(45): e2310529120, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37906647

ABSTRACT

The emergence of previously unknown disease-causing viruses in mammals is in part the result of a long-term evolutionary process. Reconstructing the deep phylogenetic histories of viruses helps identify major evolutionary transitions and contextualizes the emergence of viruses in new hosts. We used a combination of total RNA sequencing and transcriptome data mining to extend the diversity and evolutionary history of the RNA virus order Articulavirales, which includes the influenza viruses. We identified instances of Articulavirales in the invertebrate phylum Cnidaria (including corals), constituting a novel and divergent family that we provisionally named the "Cnidenomoviridae." We further extended the evolutionary history of the influenza virus lineage by identifying four divergent, fish-associated influenza-like viruses, thereby supporting the hypothesis that fish were among the first hosts of influenza viruses. In addition, we substantially expanded the phylogenetic diversity of quaranjaviruses and proposed that this genus be reclassified as a family-the "Quaranjaviridae." Within this putative family, we identified a novel arachnid-infecting genus, provisionally named "Cheliceravirus." Notably, we observed a close phylogenetic relationship between the Crustacea- and Chelicerata-infecting "Quaranjaviridae" that is inconsistent with virus-host codivergence. Together, these data suggest that the Articulavirales has evolved over at least 600 million years, first emerging in aquatic animals. Importantly, the evolution of the Articulavirales was likely shaped by multiple aquatic-terrestrial transitions and substantial host jumps, some of which are still observable today.


Subject(s)
Influenza, Human , Orthomyxoviridae , RNA Viruses , Animals , Humans , Phylogeny , RNA Viruses/genetics , Invertebrates/genetics , Orthomyxoviridae/genetics , RNA , Evolution, Molecular , RNA, Viral/genetics , Mammals/genetics
8.
Ticks Tick Borne Dis ; 14(4): 102180, 2023 07.
Article in English | MEDLINE | ID: mdl-37011496

ABSTRACT

Tick eggs contain all essential proteins for embryogenesis, and egg proteins are a potential reservoir of tick-protective antigens. However, the protein profile and dynamics during embryonic development remain unknown. This study aimed to depict the protein profile and dynamics in tick embryogenesis, further providing protein candidates for targeted interventions. Eggs from Haemaphysalis flava ticks were incubated at 28 °C and 85% relative humidity. On days 0 (newly laid eggs without incubation), 7, 14 and 21, eggs were collected, dewaxed and subject to protein extraction. Extracted proteins were digested by filter-aided sample preparation and analyzed by liquid chromatography-tandem mass spectrometry (LC/MS-MS). MS data were searched against an in-house H. flava protein database for tick-derived protein identification. Abundances of 40 selected high-confidence proteins were further quantified by LC-parallel reaction monitoring (PRM)/MS analysis throughout egg incubation. A total of 93 high-confidence proteins were identified in eggs on 0-day incubation. Identified proteins belonged to seven functional categories: transporters, enzymes, proteinase inhibitors, immunity-related proteins, cytoskeletal proteins, heat shock proteins and uncharacterized proteins. The enzyme category contained the most types of proteins. Neutrophil elastase inhibitors represented the most abundant proteins in terms of intensity-based absolute-protein-quantification. LC-PRM/MS revealed that the abundances of 20 proteins increased including enolase, calreticulin, actin, GAPDH et cetera, and the abundances of 11 proteins decreased including vitellogenins, neutrophil elastase inhibitor, carboxypeptidase Q, et cetera from 0- to 21-day incubation. This study provides the most comprehensive egg protein profile and dynamics during tick embryogenesis. Further investigations are needed to test the tick-control efficacy by targeting the egg proteins.


Subject(s)
Ixodidae , Ticks , Animals , Embryonic Development , Actins , Vitellogenins
12.
Eur Respir J ; 61(3)2023 03.
Article in English | MEDLINE | ID: mdl-36396144

ABSTRACT

RATIONALE: Severe viral respiratory infections are often characterised by extensive myeloid cell infiltration and activation and persistent lung tissue injury. However, the immunological mechanisms driving excessive inflammation in the lung remain poorly understood. OBJECTIVES: To identify the mechanisms that drive immune cell recruitment in the lung during viral respiratory infections and identify novel drug targets to reduce inflammation and disease severity. METHODS: Preclinical murine models of influenza A virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. RESULTS: Oxidised cholesterols and the oxysterol-sensing receptor GPR183 were identified as drivers of monocyte/macrophage infiltration to the lung during influenza A virus (IAV) and SARS-CoV-2 infection. Both IAV and SARS-CoV-2 infection upregulated the enzymes cholesterol 25-hydroxylase (CH25H) and cytochrome P450 family 7 subfamily member B1 (CYP7B1) in the lung, resulting in local production of the oxidised cholesterols 25-hydroxycholesterol (25-OHC) and 7α,25-dihydroxycholesterol (7α,25-OHC). Loss-of-function mutation of Gpr183 or treatment with a GPR183 antagonist reduced macrophage infiltration and inflammatory cytokine production in the lungs of IAV- or SARS-CoV-2-infected mice. The GPR183 antagonist significantly attenuated the severity of SARS-CoV-2 infection and viral loads. Analysis of single-cell RNA-sequencing data on bronchoalveolar lavage samples from healthy controls and COVID-19 patients with moderate and severe disease revealed that CH25H, CYP7B1 and GPR183 are significantly upregulated in macrophages during COVID-19. CONCLUSION: This study demonstrates that oxysterols drive inflammation in the lung via GPR183 and provides the first preclinical evidence for the therapeutic benefit of targeting GPR183 during severe viral respiratory infections.


Subject(s)
COVID-19 , Influenza, Human , Animals , Mice , Humans , SARS-CoV-2 , Macrophages , Inflammation , Cholesterol , Lung , Receptors, G-Protein-Coupled
13.
Mol Psychiatry ; 28(7): 2878-2893, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36316366

ABSTRACT

Coronavirus disease-2019 (COVID-19) is primarily a respiratory disease, however, an increasing number of reports indicate that SARS-CoV-2 infection can also cause severe neurological manifestations, including precipitating cases of probable Parkinson's disease. As microglial NLRP3 inflammasome activation is a major driver of neurodegeneration, here we interrogated whether SARS-CoV-2 can promote microglial NLRP3 inflammasome activation. Using SARS-CoV-2 infection of transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) as a COVID-19 pre-clinical model, we established the presence of virus in the brain together with microglial activation and NLRP3 inflammasome upregulation in comparison to uninfected mice. Next, utilising a model of human monocyte-derived microglia, we identified that SARS-CoV-2 isolates can bind and enter human microglia in the absence of viral replication. This interaction of virus and microglia directly induced robust inflammasome activation, even in the absence of another priming signal. Mechanistically, we demonstrated that purified SARS-CoV-2 spike glycoprotein activated the NLRP3 inflammasome in LPS-primed microglia, in a ACE2-dependent manner. Spike protein also could prime the inflammasome in microglia through NF-κB signalling, allowing for activation through either ATP, nigericin or α-synuclein. Notably, SARS-CoV-2 and spike protein-mediated microglial inflammasome activation was significantly enhanced in the presence of α-synuclein fibrils and was entirely ablated by NLRP3-inhibition. Finally, we demonstrate SARS-CoV-2 infected hACE2 mice treated orally post-infection with the NLRP3 inhibitory drug MCC950, have significantly reduced microglial inflammasome activation, and increased survival in comparison with untreated SARS-CoV-2 infected mice. These results support a possible mechanism of microglial innate immune activation by SARS-CoV-2, which could explain the increased vulnerability to developing neurological symptoms akin to Parkinson's disease in COVID-19 infected individuals, and a potential therapeutic avenue for intervention.


Subject(s)
COVID-19 , Parkinson Disease , Humans , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Microglia/metabolism , alpha-Synuclein/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/metabolism , Mice, Transgenic
14.
Virus Evol ; 8(2): veac085, 2022.
Article in English | MEDLINE | ID: mdl-36533146

ABSTRACT

Flavivirids (family Flaviviridae) are a group of positive-strand ribonucleic acid (RNA) viruses that pose serious risks to human and animal health on a global scale. Here, we use flavivirid-derived deoxyribonucleic acid (DNA) sequences, identified in animal genomes, to reconstruct the long-term evolutionary history of family Flaviviridae. We demonstrate that flavivirids are >100 million years old and show that this timing can be combined with dates inferred from co-phyletic analysis to produce a cohesive overview of their evolution, distribution, and diversity wherein the main flavivirid subgroups originate in early animals and broadly co-diverge with major animal phyla. In addition, we reveal evidence that the 'classical flaviviruses' of vertebrates, most of which are transmitted via blood-feeding arthropod vectors, originally evolved in haematophagous arachnids and later acquired the capacity to be transmitted by insects. Our findings imply that the biological properties of flavivirids have been acquired gradually over the course of animal evolution. Thus, broad-scale comparative analysis will likely reveal fundamental insights into their biology. We therefore published our results via an open, extensible, database (Flavivirid-GLUE), which we constructed to facilitate the wider utilisation of genomic data and evolution-related domain knowledge in flavivirid research.

15.
Pathogens ; 11(11)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36365042

ABSTRACT

In Australia, there is a paucity of data about the extent and impact of zoonotic tick-related illnesses. Even less is understood about a multifaceted illness referred to as Debilitating Symptom Complexes Attributed to Ticks (DSCATT). Here, we describe a research plan for investigating the aetiology, pathophysiology, and clinical outcomes of human tick-associated disease in Australia. Our approach focuses on the transmission of potential pathogens and the immunological responses of the patient after a tick bite. The protocol is strengthened by prospective data collection, the recruitment of two external matched control groups, and sophisticated integrative data analysis which, collectively, will allow the robust demonstration of associations between a tick bite and the development of clinical and pathological abnormalities. Various laboratory analyses are performed including metagenomics to investigate the potential transmission of bacteria, protozoa and/or viruses during tick bite. In addition, multi-omics technology is applied to investigate links between host immune responses and potential infectious and non-infectious disease causations. Psychometric profiling is also used to investigate whether psychological attributes influence symptom development. This research will fill important knowledge gaps about tick-borne diseases. Ultimately, we hope the results will promote improved diagnostic outcomes, and inform the safe management and treatment of patients bitten by ticks in Australia.

16.
Viruses ; 14(7)2022 07 08.
Article in English | MEDLINE | ID: mdl-35891480

ABSTRACT

Binjari virus (BinJV) is a lineage II or dual-host affiliated insect-specific flavivirus previously demonstrated as replication-deficient in vertebrate cells. Previous studies have shown that BinJV is tolerant to exchanging its structural proteins (prM-E) with pathogenic flaviviruses, making it a safe backbone for flavivirus vaccines. Here, we report generation by circular polymerase extension reaction of BinJV expressing zsGreen or mCherry fluorescent protein. Recovered BinJV reporter viruses grew to high titres (107-8 FFU/mL) in Aedes albopictus C6/36 cells assayed using immunoplaque assays (iPA). We also demonstrate that BinJV reporters could be semi-quantified live in vitro using a fluorescence microplate reader with an observed linear correlation between quantified fluorescence of BinJV reporter virus-infected C6/36 cells and iPA-quantitated virus titres. The utility of the BinJV reporter viruses was then examined in homologous and heterologous superinfection exclusion assays. We demonstrate that primary infection of C6/36 cells with BinJVzsGreen completely inhibits a secondary infection with homologous BinJVmCherry or heterologous ZIKVmCherry using fluorescence microscopy and virus quantitation by iPA. Finally, BinJVzsGreen infections were examined in vivo by microinjection of Aedes aegypti with BinJVzsGreen. At seven days post-infection, a strong fluorescence in the vicinity of salivary glands was detected in frozen sections. This is the first report on the construction of reporter viruses for lineage II insect-specific flaviviruses and establishes a tractable system for exploring flavivirus superinfection exclusion in vitro and in vivo.


Subject(s)
Aedes , Flavivirus , Superinfection , Zika Virus Infection , Zika Virus , Animals , Flavivirus/genetics , Zika Virus Infection/prevention & control
17.
Nat Commun ; 13(1): 1279, 2022 03 11.
Article in English | MEDLINE | ID: mdl-35277507

ABSTRACT

Subgenomic flaviviral RNAs (sfRNAs) are virus-derived noncoding RNAs produced by pathogenic mosquito-borne flaviviruses (MBF) to counteract the host antiviral response. To date, the ability of non-pathogenic flaviviruses to produce and utilise sfRNAs remains largely unexplored, and it is unclear what role XRN1 resistance plays in flavivirus evolution and host adaptation. Herein the production of sfRNAs by several insect-specific flaviviruses (ISFs) that replicate exclusively in mosquitoes is shown, and the secondary structures of their complete 3'UTRs are determined. The xrRNAs responsible for the biogenesis of ISF sfRNAs are also identified, and the role of these sfRNAs in virus replication is demonstrated. We demonstrate that 3'UTRs of all classical ISFs, except Anopheles spp-asscoaited viruses, and of the dual-host associated ISF Binjari virus contain duplicated xrRNAs. We also reveal novel structural elements in the 3'UTRs of dual host-associated and Anopheles-associated classical ISFs. Structure-based phylogenetic analysis demonstrates that xrRNAs identified in Anopheles spp-associated ISF are likely ancestral to xrRNAs of ISFs and MBFs. In addition, our data provide evidence that duplicated xrRNAs are selected in the evolution of flaviviruses to provide functional redundancy, which preserves the production of sfRNAs if one of the structures is disabled by mutations or misfolding.


Subject(s)
Culicidae , Flavivirus , 3' Untranslated Regions/genetics , Animals , Flavivirus/genetics , Genome, Viral , Phylogeny , RNA, Viral/chemistry , RNA, Viral/genetics
18.
PLoS Pathog ; 18(1): e1010202, 2022 01.
Article in English | MEDLINE | ID: mdl-34990484

ABSTRACT

The exogenous small interfering RNA (exo-siRNA) pathway is a key antiviral mechanism in the Aedes aegypti mosquito, a widely distributed vector of human-pathogenic arboviruses. This pathway is induced by virus-derived double-stranded RNAs (dsRNA) that are cleaved by the ribonuclease Dicer 2 (Dcr2) into predominantly 21 nucleotide (nt) virus-derived small interfering RNAs (vsiRNAs). These vsiRNAs are used by the effector protein Argonaute 2 within the RNA-induced silencing complex to cleave target viral RNA. Dcr2 contains several domains crucial for its activities, including helicase and RNase III domains. In Drosophila melanogaster Dcr2, the helicase domain has been associated with binding to dsRNA with blunt-ended termini and a processive siRNA production mechanism, while the platform-PAZ domains bind dsRNA with 3' overhangs and subsequent distributive siRNA production. Here we analyzed the contributions of the helicase and RNase III domains in Ae. aegypti Dcr2 to antiviral activity and to the exo-siRNA pathway. Conserved amino acids in the helicase and RNase III domains were identified to investigate Dcr2 antiviral activity in an Ae. aegypti-derived Dcr2 knockout cell line by reporter assays and infection with mosquito-borne Semliki Forest virus (Togaviridae, Alphavirus). Functionally relevant amino acids were found to be conserved in haplotype Dcr2 sequences from field-derived Ae. aegypti across different continents. The helicase and RNase III domains were critical for silencing activity and 21 nt vsiRNA production, with RNase III domain activity alone determined to be insufficient for antiviral activity. Analysis of 21 nt vsiRNA sequences (produced by functional Dcr2) to assess the distribution and phasing along the viral genome revealed diverse yet highly consistent vsiRNA pools, with predominantly short or long sequence overlaps including 19 nt overlaps (the latter representing most likely true Dcr2 cleavage products). Combined with the importance of the Dcr2 helicase domain, this suggests that the majority of 21 nt vsiRNAs originate by processive cleavage. This study sheds new light on Ae. aegypti Dcr2 functions and properties in this important arbovirus vector species.


Subject(s)
Aedes/immunology , Aedes/virology , Alphavirus Infections/immunology , Ribonuclease III/immunology , Aedes/genetics , Animals , DNA Mutational Analysis , Mosquito Vectors/virology , RNA, Small Interfering/immunology , RNA, Viral/immunology , Ribonuclease III/genetics , Semliki forest virus
19.
Virology ; 563: 82-87, 2021 11.
Article in English | MEDLINE | ID: mdl-34492433

ABSTRACT

The endosymbiotic bacterium Wolbachia pipientis confers RNA virus refractoriness in Drosophila and Aedes mosquitoes. Questions remain about the Wolbachia-virus restriction phenotype and how extensive this phenomenon may be within other arthropods. Here, we generated two Spodoptera frugiperda cell lines stably transinfected with two strains of Wolbachia, wAlbB and wMelPop-CLA. Despite the high density of Wolbachia in stably infected Sf9 cells, RT-PCR indicated the presence of the negative-sense RNA virus Spodoptera frugiperda rhabdovirus (SfRV) in Wolbachia-infected and uninfected cell lines. No differences in the replication of SfRV between Sf9 and Wolbachia-infected cells was found. RNA-Seq analysis of the parental Sf9 cells supported SfRV's presence in these cells with abundant 20 nt virus-derived small RNAs indicating active replication of SfRV in these cells. Overall, this study supports a growing body of evidence that Wolbachia does not restrict negative-sense RNA viruses and generates an in vitro model to examine Lepidoptera-Wolbachia virus interactions.


Subject(s)
Rhabdoviridae/physiology , Spodoptera/virology , Wolbachia/physiology , Animals , Cell Line , Genome, Viral , Host-Pathogen Interactions , RNA Interference , RNA, Viral , Wolbachia/classification
20.
Viruses ; 13(7)2021 07 14.
Article in English | MEDLINE | ID: mdl-34372574

ABSTRACT

The mosquito-borne flavivirus, Kedougou virus (KEDV), first isolated in Senegal in 1972, is genetically related to dengue, Zika (ZIKV) and Spondweni viruses (SPOV). Serological surveillance studies in Senegal and isolation of KEDV in the Central African Republic indicate occurrence of KEDV infections in humans, but to date, no disease has been reported. Here, we assembled the coding-complete genome of a 1958 isolate of KEDV from a pool of Aedes circumluteolus mosquitoes collected in Ndumu, KwaZulu-Natal, South Africa. The AR1071 Ndumu KEDV isolate bears 80.51% pairwise nucleotide identity and 93.34% amino acid identity with the prototype DakAar-D1470 strain and was co-isolated with SPOV through intracerebral inoculation of suckling mice and passage on VeroE6 cells. This historical isolate expands the known geographic and temporal range of this relatively unknown flavivirus, aiding future temporal phylogenetic calibration and diagnostic assay refinement.


Subject(s)
Flavivirus Infections/epidemiology , Flavivirus/genetics , Aedes/virology , Animals , Epidemiological Monitoring , Flavivirus/metabolism , Flavivirus/pathogenicity , Flavivirus Infections/genetics , History, 20th Century , Humans , Mosquito Vectors/virology , Phylogeny , South Africa/epidemiology , Vector Borne Diseases/history
SELECTION OF CITATIONS
SEARCH DETAIL
...