Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 628(8009): 736-740, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658684

ABSTRACT

Deployed optical clocks will improve positioning for navigational autonomy1, provide remote time standards for geophysical monitoring2 and distributed coherent sensing3, allow time synchronization of remote quantum networks4,5 and provide operational redundancy for national time standards. Although laboratory optical clocks now reach fractional inaccuracies below 10-18 (refs. 6,7), transportable versions of these high-performing clocks8,9 have limited utility because of their size, environmental sensitivity and cost10. Here we report the development of optical clocks with the requisite combination of size, performance and environmental insensitivity for operation on mobile platforms. The 35 l clock combines a molecular iodine spectrometer, fibre frequency comb and control electronics. Three of these clocks operated continuously aboard a naval ship in the Pacific Ocean for 20 days while accruing timing errors below 300 ps per day. The clocks have comparable performance to active hydrogen masers in one-tenth the volume. Operating high-performance clocks at sea has been historically challenging and continues to be critical for navigation. This demonstration marks a significant technological advancement that heralds the arrival of future optical timekeeping networks.

2.
Nature ; 467(7315): 567-9, 2010 Sep 30.
Article in English | MEDLINE | ID: mdl-20882011

ABSTRACT

Superconductivity and magnetism generally do not coexist. Changing the relative number of up and down spin electrons disrupts the basic mechanism of superconductivity, where atoms of opposite momentum and spin form Cooper pairs. Nearly forty years ago Fulde and Ferrell and Larkin and Ovchinnikov (FFLO) proposed an exotic pairing mechanism in which magnetism is accommodated by the formation of pairs with finite momentum. Despite intense theoretical and experimental efforts, however, polarized superconductivity remains largely elusive. Unlike the three-dimensional (3D) case, theories predict that in one dimension (1D) a state with FFLO correlations occupies a major part of the phase diagram. Here we report experimental measurements of density profiles of a two-spin mixture of ultracold (6)Li atoms trapped in an array of 1D tubes (a system analogous to electrons in 1D wires). At finite spin imbalance, the system phase separates with an inverted phase profile, as compared to the 3D case. In 1D, we find a partially polarized core surrounded by wings which, depending on the degree of polarization, are composed of either a completely paired or a fully polarized Fermi gas. Our work paves the way to direct observation and characterization of FFLO pairing.

3.
Science ; 311(5760): 503-5, 2006 Jan 27.
Article in English | MEDLINE | ID: mdl-16373534

ABSTRACT

We report the observation of pairing in a gas of atomic fermions with unequal numbers of two components. Beyond a critical polarization, the gas separates into a phase that is consistent with a superfluid paired core surrounded by a shell of normal unpaired fermions. The critical polarization diminishes with decreasing attractive interaction. For near-zero polarization, we measured the parameter beta = -0.54 +/- 0.05, describing the universal energy of a strongly interacting paired Fermi gas, and found good agreement with recent theory. These results are relevant to predictions of exotic new phases of quark matter and of strongly magnetized superconductors.

4.
Phys Rev Lett ; 91(8): 080406, 2003 Aug 22.
Article in English | MEDLINE | ID: mdl-14525229

ABSTRACT

We have converted an ultracold Fermi gas of 6Li atoms into an ultracold gas of 6Li2 molecules by adiabatic passage through a Feshbach resonance. Approximately 1.5 x 10(5) molecules in the least-bound, v=38, vibrational level of the X1Sigma(+)(g) singlet state are produced with an efficiency of 50%. The molecules remain confined in an optical trap for times of up to 1 s before we dissociate them by a reverse adiabatic sweep.

5.
Nature ; 417(6885): 150-3, 2002 May 09.
Article in English | MEDLINE | ID: mdl-11986621

ABSTRACT

Attraction between the atoms of a Bose-Einstein condensate renders it unstable to collapse, although a condensate with a limited number of atoms can be stabilized by confinement in an atom trap. However, beyond this number the condensate collapses. Condensates constrained to one-dimensional motion with attractive interactions are predicted to form stable solitons, in which the attractive forces exactly compensate for wave-packet dispersion. Here we report the formation of bright solitons of (7)Li atoms in a quasi-one-dimensional optical trap, by magnetically tuning the interactions in a stable Bose-Einstein condensate from repulsive to attractive. The solitons are set in motion by offsetting the optical potential, and are observed to propagate in the potential for many oscillatory cycles without spreading. We observe a soliton train, containing many solitons; repulsive interactions between neighbouring solitons are inferred from their motion.

SELECTION OF CITATIONS
SEARCH DETAIL
...