Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Blood Adv ; 7(17): 4677-4689, 2023 09 12.
Article in English | MEDLINE | ID: mdl-36478187

ABSTRACT

The transcription factor (TF) nuclear factor I-X (NFIX) is a positive regulator of hematopoietic stem and progenitor cell (HSPC) transplantation. Nfix-deficient HSPCs exhibit a severe loss of repopulating activity, increased apoptosis, and a loss of colony-forming potential. However, the underlying mechanism remains elusive. Here, we performed cellular indexing of transcriptomes and epitopes by high-throughput sequencing (CITE-seq) on Nfix-deficient HSPCs and observed a loss of long-term hematopoietic stem cells and an accumulation of megakaryocyte and myelo-erythroid progenitors. The genome-wide binding profile of NFIX in primitive murine hematopoietic cells revealed its colocalization with other hematopoietic TFs, such as PU.1. We confirmed the physical interaction between NFIX and PU.1 and demonstrated that the 2 TFs co-occupy super-enhancers and regulate genes implicated in cellular respiration and hematopoietic differentiation. In addition, we provide evidence suggesting that the absence of NFIX negatively affects PU.1 binding at some genomic loci. Our data support a model in which NFIX collaborates with PU.1 at super-enhancers to promote the differentiation and homeostatic balance of hematopoietic progenitors.


Subject(s)
Hematopoietic Stem Cell Transplantation , NFI Transcription Factors , Mice , Animals , NFI Transcription Factors/genetics , NFI Transcription Factors/metabolism , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Cell Differentiation/genetics
2.
Dev Biol ; 425(2): 101-108, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28365243

ABSTRACT

The blood-brain barrier (BBB) plays a vital role in the central nervous system (CNS). A comprehensive understanding of BBB development has been hampered by difficulties in observing the differentiation of brain endothelial cells (BECs) in real-time. Here, we generated two transgenic zebrafish line, Tg(glut1b:mCherry) and Tg(plvap:EGFP), to serve as in vivo reporters of BBB development. We showed that barriergenesis (i.e. the induction of BEC differentiation) occurs immediately as endothelial tips cells migrate into the brain parenchyma. Using the Tg(glut1b:mCherry) transgenic line, we performed a genetic screen and identified a zebrafish mutant with a nonsense mutation in gpr124, a gene known to play a role in CNS angiogenesis and BBB development. We also showed that our transgenic plvap:EGFP line, a reporter of immature brain endothelium, is initially expressed in newly formed brain endothelial cells, but subsides during BBB maturation. Our results demonstrate the ability to visualize the in vivo differentiation of brain endothelial cells into the BBB phenotype and establish that CNS angiogenesis and barriergenesis occur simultaneously.


Subject(s)
Blood-Brain Barrier/physiology , Neovascularization, Physiologic , Zebrafish/physiology , Animals , Animals, Genetically Modified , Cell Differentiation , Endothelial Cells/metabolism , Genes, Reporter , Genetic Testing , Green Fluorescent Proteins/metabolism , Mutation/genetics , Promoter Regions, Genetic/genetics , Receptors, G-Protein-Coupled/genetics , Zebrafish Proteins/genetics
3.
Front Neurosci ; 8: 364, 2014.
Article in English | MEDLINE | ID: mdl-25426018

ABSTRACT

The choroid plexus, an epithelial-based structure localized in the brain ventricle, is the major component of the blood-cerebrospinal fluid barrier. The choroid plexus produces the cerebrospinal fluid and regulates the components of the cerebrospinal fluid. Abnormal choroid plexus function is associated with neurodegenerative diseases, tumor formation in the choroid plexus epithelium, and hydrocephaly. In this study, we used zebrafish (Danio rerio) as a model system to understand the genetic components of choroid plexus development. We generated an enhancer trap line, Et(cp:EGFP) (sj2), that expresses enhanced green fluorescent protein (EGFP) in the choroid plexus epithelium. Using immunohistochemistry and fluorescent tracers, we demonstrated that the zebrafish choroid plexus possesses brain barrier properties such as tight junctions and transporter activity. Thus, we have established zebrafish as a functionally relevant model to study choroid plexus development. Using an unbiased approach, we performed a forward genetic dissection of the choroid plexus to identify genes essential for its formation and function. Using Et(cp:EGFP) (sj2), we isolated 10 recessive mutant lines with choroid plexus abnormalities, which were grouped into five classes based on GFP intensity, epithelial localization, and overall choroid plexus morphology. We also mapped the mutation for two mutant lines to chromosomes 4 and 21, respectively. The mutants generated in this study can be used to elucidate specific genes and signaling pathways essential for choroid plexus development, function, and/or maintenance and will provide important insights into how these genetic mutations contribute to disease.

4.
Hum Mol Genet ; 23(11): 2981-94, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24419318

ABSTRACT

Mutations in the human CACNA1F gene cause incomplete congenital stationary night blindness type 2 (CSNB2), a non-progressive, clinically heterogeneous retinal disorder. However, the molecular mechanisms underlying CSNB2 have not been fully explored. Here, we describe the positional cloning of a blind zebrafish mutant, wait until dark (wud), which encodes a zebrafish homolog of human CACNA1F. We identified two zebrafish cacna1f paralogs and showed that the cacna1fa transcript (the gene mutated in wud) is expressed exclusively in the photoreceptor layer. We demonstrated that Cacna1fa localizes at the photoreceptor synapse and is absent from wud mutants. Electroretinograms revealed abnormal cone photoreceptor responses from wud mutants, indicating a defect in synaptic transmission. Although there are no obvious morphological differences, we found that wud mutants lacked synaptic ribbons and that wud is essential for the development of synaptic ribbons. We found that Ribeye, the most prominent synaptic ribbon protein, was less abundant and mislocalized in adult wud mutants. In addition to cloning wud, we identified synaptojanin 1 (synj1) as the defective gene in slacker (slak), a blind mutant with floating synaptic ribbons. We determined that Cacna1fa was expressed in slak photoreceptors and that Synj1 was initially expressed wud photoreceptors, but was absent by 5 days postfertilization. Collectively, our data demonstrate that Cacna1fa is essential for cone photoreceptor function and synaptic ribbon formation and reveal a previously unknown yet critical role of L-type voltage-dependent calcium channels in the expression and/or distribution of synaptic ribbon proteins, providing a new model to study the clinical variability in human CSNB2 patients.


Subject(s)
Calcium Channels, L-Type/metabolism , Eye Diseases, Hereditary/metabolism , Genetic Diseases, X-Linked/metabolism , Myopia/metabolism , Night Blindness/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Synapses/metabolism , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Adult , Animals , Calcium Channels, L-Type/genetics , Disease Models, Animal , Eye Diseases, Hereditary/embryology , Eye Diseases, Hereditary/genetics , Female , Genetic Diseases, X-Linked/embryology , Genetic Diseases, X-Linked/genetics , Humans , Male , Myopia/embryology , Myopia/genetics , Night Blindness/embryology , Night Blindness/genetics , Retina/embryology , Retina/metabolism , Synapses/genetics , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/genetics
5.
J Cell Sci ; 120(Pt 24): 4416-25, 2007 Dec 15.
Article in English | MEDLINE | ID: mdl-18042620

ABSTRACT

In animals and yeast, CLASP proteins are microtubule plus-end tracking proteins (+TIPS) involved in the regulation of microtubule plus-end dynamics and stabilization. Here we show that mutations in the Arabidopsis CLASP homolog result in various plant growth reductions, cell form defects and reduced mitotic activity. Analysis of Arabidopsis plants that carry a YFP:AtCLASP fusion construct regulated by the AtCLASP native promoter showed similarities to the described localization of the animal CLASP proteins, but also prominent differences including punctate and preferential localization along cortical microtubules. Colocalization studies of YFP:AtCLASP and CFP:EB1b also showed that AtCLASP is enriched at the plus ends of microtubules where it localizes behind the AtEB1b protein. Moreover, AtCLASP overexpression causes abnormal cortical microtubule bundling and array organization. Cortical microtubule arrays have evolved to be prominent in plants, and our findings suggest that plant CLASP proteins may have adopted specific functions in regulating cortical microtubule properties and cell growth.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Cell Division/physiology , Morphogenesis , Recombinant Fusion Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...